Mybrary.info
mybrary.info » Книги » Научно-образовательная » Философия » Человеческое познание его сферы и границы - Рассел Бертран Артур Уильям (читать книги онлайн без регистрации .txt) 📗

Человеческое познание его сферы и границы - Рассел Бертран Артур Уильям (читать книги онлайн без регистрации .txt) 📗

Тут можно читать бесплатно Человеческое познание его сферы и границы - Рассел Бертран Артур Уильям (читать книги онлайн без регистрации .txt) 📗. Жанр: Философия. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Вероятность, являющаяся руководителем жизни, не относится к математическому виду вероятности не только потому, что она относится не к произвольным данным, а ко всем данным, которые с самого начала имеют отношение к вопросу, но также и потому, что она должна учитывать нечто целиком лежащее вне сферы математической вероятности, что можно назвать «внутренне присущей сомнительностью». Именно это и имеется в виду, когда говорят, что все наше познание только вероятно. Возьмем, например, воспоминание о далеком прошлом, которое стало настолько забытым, что мы не можем больше относиться к нему с доверием, звезду, настолько тусклую, что мы не уверены в том, действительно ли мы ее видим, или шум, настолько слабый, что мы думаем, что он нам только кажется. Это крайние случаи, но в меньшей степени такого рода сомнительность очень обычна. Если мы утверждаем, как это делает Рейхенбах, что все наше знание сомнительно, то мы не можем определить эту сомнительность математическим путем, ибо при составлении статистики уже предполагается, что мы знаем, что А есть или не есть В, что этот застрахованный человек умер или что он жив. Статистика строится на структуре предположенной достоверности прошедших случаев, и всеобщая сомнительность не может быть только статистической.

Я думаю поэтому, что все, во что мы склонны верить, имеет какую-то «степень сомнительности» или, наоборот, какую-то «степень правдоподобия». Иногда это бывает связано с математической вероятностью, а иногда нет; это более широкое и более неопределенное понятие. Но оно, однако, не является чисто субъективным. Есть родственное субъективное понятие, а именно степень убежденности, которую человек чувствует по отношению ко всякой своей вере; но «правдоподобие», как я его понимаю, есть объективное понятие в том смысле, что оно есть степень доверия, которое оказывает разумный человек. Когда я подытоживаю свои расчеты, то в первый раз я оказываю получающемуся результату только некоторое доверие, значительно большее я оказываю, если я получаю тот же результат во второй раз, и приобретаю почти полное убеждение, если я получаю его в третий раз. Этот рост убежденности идет вместе с накоплением подтверждений и является поэтому разумным. В любом предложении, в пользу которого имеется показание, хотя бы и недостаточное, есть соответствующая «степень правдоподобия», что есть то же самое, что и степень доверия, оказываемая разумным человеком. (Это последнее соображение может рассматриваться, возможно, как определение слова «разумный».) Большое значение придается вероятности в практике благодаря ее связи с правдоподобием, но если мы вообразим, что эта связь теснее, чем она на самом деле, то мы внесем путаницу в теорию вероятности.

Связь между правдоподобием и субъективным убеждением есть связь, которая может быть изучена эмпирически; у нас поэтому нет необходимости иметь какие-либо взгляды по этому вопросу до эмпирического свидетельства. Фокусник, например, может создать обстоятельства способом, известным ему самому, но рассчитанным на то, чтобы обмануть публику; он может, таким образом, приобрести данные в отношении того, как создавать неверные убеждения, что, вероятно, полезно в деле рекламы и пропаганды. Мы не можем так легко изучить отношение правдоподобия к истине, потому что мы обычно принимаем высокую степень правдоподобия за достаточное свидетельство истины, а если мы этого не делаем, мы оказываемся больше не в состоянии открывать какие бы то ни было истины. Но мы можем обнаружить, образуют ли предложения, имеющие высокую степень правдоподобия, взаимно согласованную последовательность, так как такая последовательность содержит предложения (высказывания) логики.

В результате вышеприведенного предварительного обсуждения я думаю, что каждое из обоих различных понятий имеет на основе обычного употребления равное право называться «вероятностью». Первое из них является математической вероятностью, которая поддается числовому измерению и удовлетворяет требованиям аксиом исчисления вероятности; это — тот вид вероятности, который предполагается при использовании статистики, будь то в физике, в биологии или в общественных науках, и также тот ее вид, который, как мы думаем, предполагается в индукции. Этот вид вероятности всегда имеет дело с классами, а не с отдельными случаями, за исключение того обстоятельства, когда они могут рассматриваться только как примеры.

Но существует и другой вид, который я называю «степенью правдоподобия». Этот вид применим к отдельным предложениям и всегда связан с учетом всех относящихся к делу свидетельств. Он применим даже в некоторых таких случаях, в которых нет никакого известного свидетельства. Высшая степень правдоподобия, которой только мы можем достигнуть, применима к большинству суждений восприятия; различные степени применимы к суждениям памяти в соответствии с их живостью и свежестью. В некоторых случаях степень правдоподобия может быть выведена из математической вероятности, в других же случаях это не может быть сделано; но даже в тех случаях, когда она может быть выведена, важно помнить, что это другое понятие. Именно этот вид, а не математическая вероятность подразумевается, когда говорят, что все наше познание только вероятно и что вероятность есть руководитель жизни.

Оба вида вероятности требуют обсуждения. Я начну с математической вероятности.

ГЛАВА 2

ИСЧИСЛЕНИЕ ВЕРОЯТНОСТИ

В этой главе я собираюсь трактовать теорию вероятности как ветвь чистой математики, в которой мы выводим следствия определенных аксиом, не стараясь приписать им ту или иную интерпретацию. Относительно «интерпретации» смотри главу 1 четвертой части этой книги. Следует заметить, что, в то время как интерпретация в этой области является спорной, само математическое исчисление диктует здесь ту же меру согласия, как и во всякой другой области математики. Это положение вещей никоим образом не является чем-то особенным. Интерпретация исчисления бесконечно малых почти в течение двух столетий была предметом, по поводу которого спорили математики и философы; Лейбниц считал, что она предполагает актуально бесконечно малые, и только Вейерштрасс окончательно опроверг этот взгляд. Возьмем еще более существенный пример: никогда не было никаких споров по поводу элементарной арифметики, и все-таки определение натуральных чисел все еще остается предметом спора. Мы не должны поэтому удивляться, что существует сомнение в отношении определения «вероятности», в то время как его нет (или очень мало) в отношении исчисления вероятности.

Следуя Джонсону и Кейнсу, мы будем обозначать выражением p/h неопределенное понятие «вероятность p при данном h». Когда я говорю, что это понятие является неопределенным, я имею в виду, что оно определяется только с помощью аксиом или постулатов, которые должны быть перечислены. Все, что удовлетворяет требованиям этих аксиом, является «интерпретацией» исчисления вероятности, и следует думать, что здесь возможно множество интерпретаций. Ни одна из них не является более правильной или более законной, чем другая, но некоторые могут быть более важными, чем другие. Так, среди интерпретаций пяти аксиом Пеано для арифметики та интерпретация, в которой первое число — 0, является более важной, чем та, в которой первое число — 3781; она более важна потому, что позволяет нам отождествить интерпретацию формалистической концепции с концепцией, признаваемой в перечислении. Но сейчас мы отвлечемся от всех вопросов интерпретации и займемся чисто формальной трактовкой вероятности.

Необходимые аксиомы, или постулаты, даются почти одинаково различными авторами. Следующие формулировки взяты у профессора Ч. Д. Брода. Эти аксиомы таковы:

1. Если даны p и h, то существует только одно значение p/h. Мы поэтому можем говорить о «данной вероятности p при данном h».

2. Возможные значения выражения p/h суть все действительные числа от 0 до 1, включая и то и другое. (В некоторых интерпретациях мы ограничиваем возможные значения рациональными числами; этот вопрос я буду рассматривать ниже.)

Перейти на страницу:

Рассел Бертран Артур Уильям читать все книги автора по порядку

Рассел Бертран Артур Уильям - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Человеческое познание его сферы и границы отзывы

Отзывы читателей о книге Человеческое познание его сферы и границы, автор: Рассел Бертран Артур Уильям. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*