Новая история происхождения жизни на Земле - Киршвинк Джозеф (читать хорошую книгу txt) 📗
Животные группы головоногих, появившиеся в раннем юрском периоде и обитавшие в «парниковом» океане, важны не только для истории развития жизни, но и для геологической науки, в том числе для использования окаменелостей с целью датировки. В мире есть множество мест, где на морские отложения позднего триаса наслаиваются породы, сформированные в юре. В таких местах можно путешествовать во времени, а если слои достаточно велики, есть шанс проследить многие драматические события позднего триасового и раннего юрского периодов. Данные породы отражают одно из пяти крупнейших массовых вымираний — триасово-юрское. По мере погружения в верхние слои триасовых отложений вы сначала наталкиваетесь на окаменелости двустворчатых рода Halobia, а в более молодых породах встречаетесь с многочисленными представителями рода Monotis. Но потом двустворчатые исчезают, оставляя необитаемыми несколько метров породы и времени — это позднейший этап триаса, около 3 млн лет, известный как рэтский ярус.
Затем, через несколько метров этого безжизненного вертикального пространства пород, неожиданно появляется новая группа — аммониты. Хотя в отложениях позднего триаса и встречаются аммониты, но они весьма немногочисленны. Зато уже в самом раннем ярусе юрского периода (в Лайм Регис в Англии, в южной Германии и других местах, знаменитых своими аммонитами) эти организмы находятся в огромном количестве, и в слое глубиной всего лишь несколько метров наблюдается их большое разнообразие. Это вам не триас, где один вид это всё, что вы найдете. Аммониты раннего юрского периода разнообразны и многочисленны, а это значит, что к тому моменту закончилось, наконец, падение уровня кислорода, и концентрация этого газа в земных средах снова стала увеличиваться. Однако аммониты вовсе не свидетельствуют о наличии уровня кислорода, равного современному. Эти существа появились в связи с тем, что в водах океана у поверхности кислорода стало чуть-чуть больше, вот они и воспользовались преимуществом. Им это удалось, так как они, возможно, — одни из тех животных, что лучше всего на Земле приспособлены к малому содержанию кислорода в окружающей среде и потому укрепили свои позиции во времена парникового эффекта юрского и мелового периодов.
Раковины наутилоидов и аммонитов имеют много общего, а потому мы заключаем, что образ жизни у них также мог быть схожим. Наутилусы сегодня обитают в водах, богато насыщенных кислородом, но при этом время от времени встречаются и в придонных областях морей, где кислорода не так уж много. Любопытно, что среди головоногих, известных тем, что им необходима большая концентрация кислорода в средах обитания, тем не менее существует одна группа, непохожая в этом отношении на остальных, — это имеющий раковину наутилус. Он очень устойчив к переменам среды и может от 10 до 15 минут не выказывать дискомфорта, если его вытащить из воды. В воде они поглощают кислород с помощью относительно большой и мощной помпы-сифона, пропускающей сквозь жабры большое количество воды, тем самым обеспечивая большой приток кислорода даже в воде с малой концентрацией кислорода. Если уж какой-либо организм и мог приспособиться к малому количеству кислорода в воде, то это наутилус, что, в частности, было убедительно доказано британским зоологом Мартином Уэллсом, измерившим потребление кислорода у различных наутилусов в Новой Гвинее. Когда наутилус попадает в среду с малым содержанием кислорода, происходят две вещи: во-первых, у него замедляется метаболизм, а во-вторых, его удивительные плавательные способности позволяют ему проплывать большие расстояния в поисках не только пищи, но и мест, где кислорода будет больше.
Появление множества аммонитов в нижних ярусах юры показывает, что эти организмы были прекрасно приспособлены к поглощению максимума кислорода из воды с минимальной концентрацией этого драгоценного газа. Об этой замечательной способности свидетельствует и разнообразие их форм в юрском и меловом периодах, хотя впервые хорошо приспособленное к недостатку кислорода строение их тел могло появиться на границе триаса и юры. По сравнению с морфологией аммонитов, живших до триасово-юрского массового вымирания, тела новых организмов имели значительно большую, чем фрагмакон, жилую камеру, поэтому у них были более тонкие стенки раковин с усложненными швами. Швы также позволяли моллюску быстрее избавляться от жидкости, накопившейся в раковине, чтобы увеличить скорость и маневренность передвижения. Внутри жилой камеры располагался сам моллюск, который мог спрятаться глубоко в раковину. Кроме того, жабры у новых аммонитов были более удлиненные, чему их предков.
Нам не известно, сколько жабр было у аммонитов — две (как у современных креветок или осьминогов) или четыре (как у современных наутилусов). Большинство сохранившихся раковин раннего юрского периода также показывают, что эти животные не были хорошими пловцами. По всей вероятности, они плавали медленно у поверхности или на поверхности воды, используя свою наполненную воздухом раковину как дирижабль.
В течение юрского периода аммониты изменились незначительно, но в меловом у них произошли большие изменения в строении раковин, которые становились все более и более замысловатыми. Первоначальные формы, ориентированные, как у наутилусов, в одной плоскости, сохранились в меловом периоде, однако появилось и множество новых. Предлагаем вновь нырнуть в океан позднего мелового периода, на этот раз вместе с аммонитами.
Независимо от формы, большинство аммонитов искали на дне ракообразных и другую мелкую добычу. В одной экосистеме могло сосуществовать до дюжины различных групп аммонитов, каждая — со своей формой раковины. Некоторые были совсем маленькими, не более 2,5 см в диаметре, диаметр других достигал 15 см. Большинство раковин аммонитов имели толстые, замысловато расставленные ребра и шипы разного вида, которые могли служить защитой в мире, полном хищников, обладавших приспособлениями для разгрызания раковин. Такие защитные механизмы вполне могут объяснить процветание аммонитов в «парниковом» океане мелового периода. Вероятно, их основными врагами были плезиозавры и мозазавры.
Аммониты выглядели как кальмары, которых засунули в раковину наутилуса. Сегодня наутилусы имеют 90 щупалец, тогда как у аммонитов было восемь или десять. Наутилусы — падальщики, а современные кальмары и аммониты мезозоя — хищники, которым для питания нужны живые жертвы.
Другой группой моллюсков в океанах «парникового» периода были двустворчатые, не такие странные, как рудисты, но определенно отличные от всех ныне живущих форм. Мы говорим об иноцерамах (род Inoceramus). Родственники устриц, они составляли большую группу с разнообразным видовым составом и населяли грязевое дно древних морей. Ни один не был роющим, они просто прикреплялись к поверхности дна. Некоторые из них представляли собой настоящих великанов, раковины которых — миндалевидные, со складчатой структурой — от макушки до устья достигали 20 см. Впрочем, в отличие от современных двустворчатых моллюсков, стенки древних организмов этой группы по сравнению с их размерами были тонкими, как бумага. Их верхние створки иногда украшали устрицы, гребешки, мшанки, морские желуди-балянусы и трубчатые черви. Тем не менее обычно двустворчатые-иноцерамы обитали в местах, где было слишком мало кислорода для «нормальных» моллюсков и других беспозвоночных. Многие наши коллеги используют геохимические методы в исследованиях различий древних и современных двустворчатых. Странности сообществ двустворчатых моллюсков мезозойской эры блестяще показаны, например, в недавней совместной работе Нила Ландмана из Американского музея естественной истории и геохимика Кирка Кокрана. Один только размер иноцерамов в сравнении с прочими двустворчатыми может говорить о том, насколько необычными были эти существа. Самые большие современные двустворчатые — тропические тридакны — могут достигать 15 см в длину, при этом вес их живой ткани составляет около 0,5–1 кг. Некоторые устрицы бывают примерно 30 см в длину, но никак не больше. Размеры иноцерамов находятся где-то между гигантскими тридакнами и гуидаками. Разнообразные иноцерамы процветали в «парниковых» морях с пермского периода до окончания мела, периода их полного вымирания. Иноцерамы существовали в симбиозе с микроорганизмами, помогавшими им выживать за счет метана и других химических веществ, поступающих из органического материала со дна моря, — они не фильтровали воду ради пищи, как это делают современные двустворчатые.