Электричество в жизни рыб - Лаздин Александр Владимирович (библиотека книг .TXT) 📗
Необходимо отметить, что сопротивление отдельных участков тела электрических рыб как бы приспособлено к электрическому сопротивлению окружающей их воды. Если это условие нарушено, рыба начинает ощущать собственные разряды. В родной стихии скат не реагирует на разряды благодаря высокой электропроводности морской воды. Если же ската вынуть из воды, каждый разряд будет вызывать непроизвольное сокращение его мускулатуры.
Электрические рыбы вообще мало восприимчивы к электрическому току. Так, электрический сом легко переносит воздействие тока большой силы и высокого напряжения, при котором другие рыбы погибают. Экспериментально доказано, что переменным током высокого напряжения можно убить и ската, но для этого плотность тока должна быть в 12 раз больше, чем для неэлектрической рыбы, например для морского окуня.
Как уже говорилось, при каждом разряде в воде вокруг электрических рыб образуется характерное электрическое поле. Его структура определяется формой тела рыб и электрических органов, а также ориентацией в них пластинок.
Несомненно также, что имеет значение и расположение в теле рыб участков с высокой электрической проводимостью.
У электрических угря и сома внешнее электрическое поле расположено горизонтально по оси тела рыб: перед головой и позади хвоста. Оно четко обнаруживается перед головой угря на расстоянии 5—10 м, сома — 2—5 м. Такое распространение электрического поля связано с горизонтальным расположением столбиков в электрических органах этих рыб.
Полярность электрических полей у сома и угря различна. Впервые структуру таких полей и направление в них тока определил в 1838 г. Фарадей.
Несмотря на то что во времена Фарадея техника регистрации токов была несовершенна, его опыты оказались безупречными.
Электроды, которые Фарадей прикладывал к голове и хвосту рыб, были подключены к соленоиду со стальной иглой. В момент прохождения по соленоиду импульса тока игла намагничивалась, и по магнитным полюсам на концах иглы ученый определял полярность исследуемых участков тела рыб.
Совершенно иначе расположено в пространстве относительно тела электрическое поле скатов. Столбики в электрических органах скатов находятся в вертикальном положении; лицевая сторона каждой электрической пластинки повернута вверх, к спине. Так как соответствующие органы расположены в грудной части рыбы, во время разряда спинная поверхность ее тела становится электроотрицательной по отношению к брюшной, а электрический диполь располагается перпендикулярно телу ската (рис. 6).
Направление ударов электрического тока у рыб разных видов неодинаково (рис. 7). Звездочеты генерируют разнообразные по силе и характеру разряды. Напряжение разрядов североатлантических звездочетов достигает 50 В при силе тока около 1 А. В связи с вертикальным размещением столбиков в электрических органах звездочетов электрическое поле, возникающее во время разряда, направлено перпендикулярно к телу рыбы в области головы. Спинная часть тела электроотрицательна относительно брюшной, а направление электроотрицательной части поля, идущей вверх, приблизительно совпадает с направлением зрительных осей глаз.
Черноморский звездочет генерирует разряды двух типов Разряды первого типа рыба генерирует круглосуточно. В экспериментальных условиях они возникают в ответ на механическую стимуляцию, иногда во время плавания при столкновении рыбы с препятствием Разряды, вызванные механической стимуляцией, могут следовать друг за другом с интервалами 20 мс. Разряды этого типа обычно состоят из 4—5 импульсов синусоидальной формы. Продолжительность таких разрядов 60—400 мс, а амплитуда обычно не превышает 100 мкВ (иногда 1000 мкВ на расстоянии 10 см от рыбы).
Разряды самки и самца черноморского звездочета в одинаковых условиях отличаются по амплитуде в зависимости от характера стимуляции. У самцов амплитуда разрядов не изменяется, а самки в ответ на биологическую стимуляцию (подсаживание к звездочету хищных скатов: морского кота или морской лисицы) начинают излучать серии разрядов, амплитуда которых в 2—3 раза больше, чем при механической стимуляции.
Рис. 6. Электрическое поле ската в поперечном разрезе в момент разряда (вид спереди)
1 — призмы и электрические пластинки, 2 — нервы, 3, 4 — неэлектрические участки тела
Рис. 7. Направление ударов электрического тока у некоторых рыб а — электрический угорь, б — электрический сом, в — электрический скат, г — обыкновенный скат
Разряды второго типа черноморский звездочет генерирует в период нереста. При каждом импульсе вокруг черноморского звездочета образуется электрическое поле дипольного характера В этот момент хвост относительно головы заряжен отрицательно. Следовательно, расположение электрических органов у черноморского и североатлантического звездочетов различно. По характеру разрядов черноморские звездочеты занимают промежуточное положение между слабоэлектрическими и неэлектрическими рыбами.
Разряды обыкновенных скатов можно вызвать лишь механической стимуляцией: почесыванием спины, пощипыванием хвоста. Амплитуда и длительность разрядов непостоянны. Эти рыбы обычно генерируют два типа разрядов. Одни продолжительны и образуются в результате сложения потенциалов большого количества электрических пластинок, работа которых в некоторой степени синхронна. Другие состоят из набора потенциалов асинхронно работающих электрических пластинок. Разряды первого типа отличаются большей амплитудой, меньшей продолжительностью, они более редкие.
Напряжение между головой и хвостом во время разряда обычно не превышает 1 В. Электрическое поле располагается горизонтально по отношению к нулевой точке, находящейся в районе хвостового стебля, где размещен электрический орган. Так как электрические пластинки в соответствующем органе расположены лицевой стороной к голове, электрическое поле перед рыбой отрицательно относительно хвоста.
Среди обыкновенных скатов наиболее исследован шиповатый скат — морская лисица. В ответ на раздражение морская лисица через 0,27 с рефлекторно генерирует 2—5 разрядов, каждый продолжительностью 0,01 с, частота следования — 35 разрядов в секунду. Максимальное напряжение, возникающее между головой и хвостом, 0,18 В.
На силу и частоту разрядов электрических органов большое влияние оказывает температура. Обычно при увеличении температуры частота разрядов возрастает, а сила уменьшается. Морская лисица — холодноводная рыба, поэтому наиболее четкий разряд у нее отмечается при температуре 21°.
Предполагалось, что в экспериментальных условиях разряды морской лисицы можно вызвать только с помощью принудительной стимуляции. Однако наблюдения сотрудников лаборатории ориентации рыб Института эволюционной морфологии и экологии им. А. Н. Северцова показали, что в определенное время года морские лисицы в некоторых поведенческих ситуациях испускают разряды спонтанно.
В отличие от сильноэлектрических рыб, звездочетов и обыкновенных скатов, излучающих отдельные разряды, типичные слабоэлектрические рыбы излучают серии почти непрерывных и ритмичных импульсов. Напряжение тока, генерируемого слабоэлектрическими рыбами, измеряется десятыми долями вольта. По характеру разрядов все эти рыбы могут быть подразделены на две группы.
К первой относят рыб, у которых разряды регулярные, монофазные, с относительно большой длительностью импульсов (2—10 мс). Частота следования импульсов варьирует от 60 до 940 в секунду. Среди рыб этой группы наиболее изучен гимнарх. Его разряды состоят из электрических импульсов, непрерывно следующих друг за другом с частотой приблизительно 300 импульсов в секунду. Импульсы гимнарха можно зарегистрировать и вне воды, если держать рыбу в воздухе, а электроды наложить непосредственно на кожу. Частота излучения электрических импульсов у гимнарха меняется только при изменении температуры воды (раздражение и физиологическое состояние не оказывают влияния). Наиболее четко проявляются разряды при температуре воды 28°.