В поисках памяти - Кандель Эрик Ричард (книги серии онлайн .txt) 📗
Мы обнаружили, что интернейроны, активируемые ударом тока в заднюю часть тела аплизии, выделяют нейромедиатор серотонин. Кроме того, эти интернейроны образуют синапсы и с телами клеток сенсорных нейронов, и с их пресинаптическими окончаниями и не только вызывают медленный синаптический потенциал, но и увеличивают выделение сенсорным нейроном глутамата в синаптическую щель, соединяющую его с мотонейроном. Более того, воздействуя серотонином на синаптические связи между сенсорными нейронами и мотонейронами, мы и сами могли вызывать медленный синаптический потенциал, увеличение синаптической силы и усиление рефлекса втягивания жабр.
Мы назвали эти выделяющие серотонин интернейроны модуляторными интернейронами, потому что они служат не для непосредственного обеспечения поведенческой реакции, а для модуляции рефлекса втягивания жабр за счет усиления связей сенсорных нейронов с мотонейронами.
Благодаря этим открытиям мы поняли, что существует два типа нейронных цепей, играющих важную роль в поведении и обучении: основные цепи, исследованные нами ранее, и модуляторные, которые мы еще только начинали подробно исследовать (рис. 16–1). Основные цепи служат для непосредственного обеспечения поведенческих реакций, значит, имеют кантианскую природу. Это предопределенные генетикой и механизмами развития нейронные компоненты поведения, его нейронное устройство. Основные цепи состоят из сенсорных нейронов, иннервирующих сифон, интернейронов и мотонейронов, управляющих рефлексом втягивания жабр. В ходе обучения основная цепь играет роль ученика, приобретающего новые знания. Модуляторные цепи, в свою очередь, имеют локковскую природу. Модуляторная цепь играет роль учителя. Она служит не для непосредственного обеспечения поведенческой реакции, но для точной настройки этой реакции в процессе обучения за счет гетеросинаптической модуляции силы связей сенсорных нейронов с мотонейронами. Модуляторная цепь, активируемая ударом тока в заднюю часть тела, учит аплизию обращать внимание на прикосновение к сифону, что может оказаться важным для ее безопасности. Таким образом, эта цепь, по сути, обеспечивает у аплизии состояние стресса, подобно аналогичным модуляторным цепям, которые служат неотъемлемыми компонентами механизма памяти у более сложных животных, в чем нам еще предстоит убедиться.
16–1. Два типа нейронных цепей в нервной системе. Основные цепи обеспечивают поведенческие реакции, а модуляторные воздействуют на основные, регулируя силу их синаптических связей.
Меня поразило, что роль модулятора сенсибилизации у аплизии играет именно серотонин! Одни из моих первых экспериментов, проведенных в 1956 году под руководством Дома Пурпуры, были посвящены действию серотонина. Более того, весной 1956 года в День студента в медицинской школе Нью-Йоркского университета я выступая с небольшим докладом на тему «Электрофизиология взаимодействия серотонина и ЛСД в афферентных проводящих путях коры головного мозга». Джимми Шварц любезно согласился выслушать репетицию этого доклада и помог мне его улучшить. Я начинал понимать цикличность жизни. Я не занимался серотонином почти двадцать лет и вот возвращался к нему с возобновленным интересом и увлеченностью.
Когда нам стало известно, что серотонин действует как модуляторный медиатор, увеличивая выделение глутамата из пресинаптических окончаний сенсорного нейрона, все было готово для биохимического исследования работы памяти. По счастью, на этом пути у меня был такой отличный проводник и напарник, как Джимми Шварц.
До своего возвращения в Нью-Йоркский университет Джимми работал в Рокфеллеровском университете с бактерией кишечной палочкой (Escherichia coli) — одноклеточным организмом, исследования которого позволили открыть многие фундаментальные принципы современной биохимии и молекулярной биологии. В 1966 году он переключился на аплизию и начал свои исследования этого организма с выявления химических медиаторов, выделяемых нейронами абдоминального ганглия. С 1971 года мы объединили усилия, чтобы исследовать молекулярные процессы, сопровождающие обучение.
Джимми оказал мне неоценимую помощь на этом втором большом этапе моего становления как биолога. На наши исследования повлияли работы Луиса Флекснера, показавшего за несколько лет до этого, что долговременная память у мышей и крыс требует синтеза новых белков, а кратковременная память не требует. Белки — главные работники клетки. Они составляют ее ферменты, ионные каналы, рецепторы и систему транспорта. Поскольку, как мы выяснили, в долговременной памяти задействовано образование новых связей, не было ничего удивительного в том, что для образования этих связей требуется синтез новых белков.
Мы с Джимми занялись проверкой этой идеи на аплизии — на уровне сенсорного нейрона сифона и его синапсов на мотонейронах жабр. Если синаптические изменения сопровождают изменения памяти, то выявленные нами кратковременные синаптические изменения не должны требовать синтеза новых белков. Именно это мы и обнаружили. Что же тогда обеспечивает эти кратковременные изменения?
Кахаль показал, что нервная система состоит из нейронов, специфическим образом связанных друг с другом проводящими путями. Я наблюдал эту удивительную специфичность связей в простых нейронных цепях, обеспечивающих рефлекторное поведение у аплизии. Но Джимми отметил, что эта специфичность распространяется и на молекулы — соединения атомов, которые служат функциональными элементами клетки. Биохимики установили, что молекулы могут взаимодействовать друг с другом в пределах клетки и что происходящие при этом химические реакции связаны в определенные последовательности, которые называют биохимическими сигнальными путями. Такие пути передают информацию в виде молекул от поверхности клетки в ее внутреннюю среду; подобно тому как нервные клетки передают информацию друг другу. Но это «беспроводные» пути. Молекулы, плавающие внутри клетки, распознаются другими специфическими молекулами и связываются с ними, регулируя их активность.
Мы не только реализовали мой давний замысел поймать выработанную в ходе обучения реакцию в наименьшей возможной популяции нейронов, мы также поймали один из компонентов простой формы памяти в единственной сенсорной клетке. Но даже в единственном нейроне аплизии содержатся тысячи различных белков и других молекул. Какие из них отвечают за кратковременную память? Когда мы с Джимми начали обсуждать, как это можно узнать, мы сосредоточились на идее, что серотонин, выделяемый в ответ на электрический удар, может увеличивать выделение глутамата из сенсорного нейрона, запуская в нем особую последовательность биохимических реакций.
Последовательность биохимических реакций, которую мы искали, должна была служить двум принципиальным целям. Во-первых, эти реакции должны были преобразовывать непродолжительное воздействие серотонина в молекулы, сигнал которых сохранялся бы внутри сенсорного нейрона в течение минут. Во-вторых, молекулы должны были передавать сигнал от клеточной мембраны, на которую действует серотонин, во внутреннюю среду клетки — в особые участки окончаний аксона, задействованные в выделении глутамата. Мы подробно изложили эти мысли в своей статье 1971 года, опубликованной в Journal of Neurophysiology, и высказали предположение, что в этом процессе могут быть задействованы молекулы одного особого вещества — так называемого циклического АМФ.
Что такое циклический АМФ? И почему мы сочли его вероятным претендентом на эту роль? Мне пришел в голову именно циклический АМФ в связи с тем, что было известно: небольшие молекулы этого вещества служат важнейшими регуляторами передачи сигналов в мышечных и жировых клетках. Мы с Джимми знали, что природа консервативна, поэтому механизм, используемый в клетках одной ткани, с большой вероятностью сохранится и будет использоваться в клетках другой. Эрл Сазерленд из Западного резервного университета Кейса в Кливленде в то время уже обнаружил, что гормон адреналин (эпинефрин) вызывает непродолжительные биохимические изменения на поверхности мембраны жировых и мышечных клеток, приводя к более продолжительным изменениям внутри клеток. Эти более продолжительные изменения происходят за счет повышения содержания циклического АМФ во внутренней среде клеток.