Рассказы о биоэнергетике - Скулачев Владимир Петрович (книги бесплатно без .TXT) 📗
Электрический кабель цианобактерий
Другая проблема, долго дожидавшаяся своего срока, — это передача энергии вдоль мембраны. С самого начала хемиосмотической эпопеи мне казалось очевидным, что разность электрических потенциалов весьма удобна для транспорта энергии в пределах клетки. Дело в том, что система из двух солевых растворов, разделенных мембраной с ее свойствами превосходного изолятора, могла бы действовать в режиме электрического кабеля. Солевые растворы — проводники с очень низким сопротивлением, мембрана — структура, сопротивление которой очень высоко. Поэтому электрическое поле, созданное, например, переносом Н+ через мембрану в какой-то ее точке, должно немедленно распространиться по всей мембране.
Транспортабельность — необходимое свойство конвертируемой формы энергии. Поскольку разность электрических потенциалов является достоянием мембраны в целом, она должна объединять тысячи вмонтированных в нее генераторов и потребителей протонного потенциала в единую систему энергообеспечения бактерии, митохондрии или хлоропласта.
Все они имеют, как принято считать, микронные размеры. Расчет показывает, что передача потенциала на такие расстояния идет практически без потерь. Потери невелики и при значительно больших расстояниях - вплоть до нескольких миллиметров. Но есть ли столь протяженные мембранные образования, генерирующие протонный потенциал?
Электрический кабель цианобактерий
Аналогия мембраны с электрическим кабелем давно используется нейрофизиологами: распространение нервного импульса вдоль весьма протяженных мембран аксона происходит как по кабелю. Однако это передача сигнала, а не электрической мощности, которую необходимо использовать для совершения работы. Да и протонных генераторов нет в аксоне.
Вот если бы митохондрия или бактерия была длиной в несколько миллиметров, тогда можно было бы говорить об электропроводке и передаче мощности.
А нет ли в природе длинных митохондрий? Само слово «митохондрия» в переводе означает «нить-зерно». Действительно, рассматривая клетку под световым микроскопом, цитологи давно уже обратили внимание на то, что митохондрии бывают двух типов: вытянутые, нитевидные и округлые, шарообразные. Диаметр нитевидных митохондрий столь мал, что световой микроскоп не позволяет надежно ответить на вопрос, где кончается одна митохондрия и начинается другая.
Чтобы повысить разрешение, прибегают к помощи электронного микроскопа. Через ткань или клетку делают срез и затем фотографируют его, используя вместо светового луча пучок электронов. На срезах митохондрии почти всегда выглядят как мембранные пузырьки округлой формы.
Это не удивительно: поперечный срез через нить, как и через шарик, даст нечто круглое. Такое, казалось бы, очевидное обстоятельство долгое время игнорировалось электронными микроскопистами, которые упорно считали митохондрии мелкими шаровидными или овальными образованиями.
Ошибка выяснилась, как только начали применять метод серийных срезов. Через клетку простейшего сделали несколько десятков параллельных срезов, сфотографировали их под электронным микроскопом, а затем воссоздали истинную трехмерную структуру митохондрий внутри клетки этого организма.
Сколь велико было удивление исследователей, когда выяснилось, что в клетке вместо десятков и сотен округлых митохондрий есть всего одна гигантская сетчатая митохондрия, более всего напоминающая авоську. Она располагается под внешней мембраной клетки по всей ее протяженности, так что размер митохондрии оказывается соизмерим с размером самой клетки.
Гигантские сетчатые митохондрии были обнаружены не только у простейших, но также и у дрожжей и некоторых других одноклеточных организмов. Утвердилось даже мнение, что такие большие митохондрии — специфика одноклеточных.
Открытие гигантских митохондрий относится к семидесятым годам. Оно сильно укрепило меня в перспективности поиска электропроводки, существование которой я постулировал в 1969 году, исходя из самых общих соображений.
Следующим важным этапом стало изучение мышечных митохондрий. Клетка мышцы достигает огромных размеров. Ее энергетические потребности очень велики, а диффузия АТФ и окисляемых соединений затруднена ввиду того, что клетка буквально набита плотно упакованными структурами — тяжами сократительного белка актомиозина.
Как-то раз Л. Бакеева, сотрудница нашего отдела электронной микроскопии, показала мне странную микрофотографию. На срезе мышцы крысиной диафрагмы была видна сеть каких-то темных структур, пронизывающая все тело мышечной клетки. По форме эти структуры были так необычны, что я не сразу признал в них митохондрии. Внимательно рассмотрев фотографию, мы убедились, что срез прошел вблизи так называемого Z-диска, особого белкового образования, к которому крепятся актомиозиновые тяжи. Плоскость среза оказалась строго параллельной Z-диску.
Митохондрии в мышце формируют сеть? Чтобы проверить, не случайно ли наше наблюдение, мы углубились в литературу по ультраструктуре мышечной ткани. «Раскопки» показали, что в 1966 году некто X. Бубенцер из ФРГ и независимо Г. Готье и X. Падикула из Франции наблюдали сетевидные митохондрии в мышце диафрагмы. Авторы использовали одиночные срезы и потому не могли получить точного представления о структуре митохондриальной сети в целом.
Бакеева приготовила серийные ультратонкие срезы мышцы диафрагмы. Расстояние между соседними срезами было меньше одного микрона, количество cpeзов — 45. В результате этой технически очень сложной работы было получено 45 микрофотографий, по которым удалось воссоздать истинную картину строения митохондрий в диафрагме. Из розового дентального воска Бакеева вылепила модель, форма которой точно соответствовала митохондриальным структурам мышцы, но была увеличена в десять тысяч раз. И вот тут-то нам открылась истинная картина строения мышечных митохондрий.
Она оказалась поистине удивительной. Кружки и эллипсы, видные на одиночных срезах, в действительности были сечением через различные элементы единой трехмерной конструкции, пронизывающей всю мышечную клетку. Конструкция состояла из сетей, расположенных вблизи Z-дисков, и колонн, перпендикулярных сетям и соединяющих их друг с другом. Ни одной шарообразной митохондрии, не связанной с основным каркасом, обнаружено не было.
Для этой новой структуры я предложил название «reticulum mitochondriale» (митохондриальный ретикулум по аналогии с уже известным эндоплазматическим ретикулумом — системой мельчайших мембранных цистерн, ответственных за обратимое поглощение ионов кальция внутри мышечной клетки). Но про себя называл хитросплетение мышечных митохондрий внутриклеточной электропроводкой, свято веря, что если уж мышечное волокно пронизано мембранами, которые находятся под напряжением в четверть вольта, то сам бог велел использовать их для передачи электрической энергии. Такая электропроводка могла бы резко облегчить ситуацию в тяжело работающей мышце, испытывающей острый энергетический дефицит.
Свидетельство в пользу особого значения митохондриального ретикулума для мышечной работы было получено при исследовании становления этой структуры в процессе формирования диафрагмы. Мышца диафрагмы бездействует у эмбриона и начинает функционировать с первым вздохом новорожденного. Учитывая это обстоятельство, Ю. Ченцов, шеф микроскопистов в нашей лаборатории, предложил Л. Бакеевой сравнить структуру митохондрий диафрагмы у крысиного эмбриона перед самым рождением и у однодневного крысенка.
Как и следовало ожидать, митохондриальный ретикулум отсутствовал в бездействующей диафрагме эмбриона. Здесь были лишь немногочисленные, вытянутые, лежащие отдельно митохондрии, ориентированные перпендикулярно Z-дискам.
После рождения количество митохондрий резко возросло, эмбриональные митохондрии вытянулись, утолщились и начали ветвиться в области Z-дисков. Через неделю уже ясно просматривались контуры будущих сетей, параллельных Z-дискам и перпендикулярных эмбриональным митохондриям, превратившимся в колонны, поддерживающие сети. К концу четвертой недели после рождения формирование митохондриального ретикулума было почти закончено.