Сфинксы XX века - Петров Рэм Викторович (лучшие бесплатные книги .TXT) 📗
Вспомним официальную международную статистику. Из 636 операций пересадки от человека человеку почек только 9 пациентов прожили больше 2 лет, всего 3 человека пережили 3-летний срок и лишь 2 человека прожили больше чем 4 года. Процент успеха ничтожный. 2 случая из 636 — это 0,3 процента.
Эти две почки были взяты у родных братьев или сестер. Из 336 операций по пересадке почек от неродных доноров только 14 человек прожили год, и лишь один оперированный отметил двухлетний срок операции. Результаты понятны.
Статистика итогов пересадок между близнецами совсем другая. Она свидетельствует о принципиально иных итогах, когда иммунитет молчит. Так, например, из 22 операций, сделанных в разных клиниках мира в 1961 году, подавляющее большинство закончилось успешно. Произошло истинное приживление почек, взятых для пересадки от идентичного близнеца. Через четыре года нормально функционировало 14 пересаженных органов.
Это уже не 0,3 процента, а 64 процента!
Восемь почек перестали работать, но не потому, что отторглись. В них развился тот же патологический процесс, та же болезнь, которой страдал этот человек до трансплантации и которая вывела из строя его собственные почки. Но это уже результат природы болезни, с которой не умеют бороться. Ведь пересадка органов, как и вся хирургия, — это уже крайность. К ножу прибегают не потому, что хирурги любят оперировать, а оттого, что терапевты не могут вылечить. Стремиться надо к бескровному лечению. Когда становится ясна природа болезни, чаще всего находят способы борьбы с ней более нежные, чем оперативные. Если же нет — приходится оперировать. И конечно, операция пересадки почки не вылечивает человека, если причина не в ней, а во всем организме.
Я преклоняюсь перед хирургией, но вот что говорит нам беспощадная объективность: мастерство хирургов великолепно, самые сложные пересадки возможны, но… если иммунитет молчит. В случаях аутотрансплантаций и трансплантаций между идентичными близнецами — только… пока только.
Попытки пересадок тканей и органов от любого донора на сегодняшний день остаются, к сожалению, всего лишь попытками. Смелыми, но не достигающими основной цели — орган приживает лишь временно. Оперированные лишь на время превращаются в сфинксов, последняя загадка которых еще не разгадана. Впрочем, кто знает, может, и не последняя. Ведь сфинкс есть сфинкс. Наша задача — разгадать ее, эту последнюю, а может, очередную загадку. Заставить несовместимые ткани, из которых составлен сфинкс, мирно сосуществовать годы, десятилетия, всю жизнь.
Это одна из важнейших задач современной медицины и биологии. Это центральная проблема сегодняшней иммунологии.
Взаимосвязь наук
«Недопустимо, чтобы молодые ученые забывали о том, что новые открытия обнаруживают тенденцию возникать в пограничной зоне между различными науками, где одна дисциплина примыкает к другой. Если бы я понимал это раньше, я был бы гораздо лучшим биологом».
Сфинкс в ракете
Рождаются все новые и новые науки. Этот процесс совершается постоянно со все увеличивающейся скоростью. Таково время. На наших глазах родились кибернетика, бионика, биофизика, молекулярная биология, радиобиология и так далее. Новые отрасли знаний тотчас начинают ветвиться. Из радиобиологии, например, выросли радиационная биохимия, радиационная генетика, радиационная иммунология. Все эти новые отрасли возникли в тех местах, если так можно выразиться, где радиобиология соприкоснулась с биохимией, генетикой, иммунологией. Это то, что так часто называют «на стыках наук». В наши дни именно на этих-то «стыках» рождается много интересных и продуктивных направлений, открытий, теорий.
В тесное соприкосновение входят не только новые предметы исследований, но и старые науки. Из астрономии и биологии в наши дни родилась астробиология, или, как ее иногда называют, экзобиология, то есть наука о жизни вне (экзо) планеты Земля. Освоение космоса и медицина (это уже стык не двух, трех, а целой академии наук) породили космическую медицину. Медицина и космическая медицина принципиально отличаются друг от друга. Медицина занимается больными людьми. Космическая если и занимается людьми, то только здоровыми. Мне хочется думать, что космическая медицина — прообраз будущей профилактической медицины.
Иллюстрировать деление и связанность наук можно бесконечно. Это закон современности. Древо науки непрерывно ветвится. Старые ветви и молодые побеги устанавливают все новые связи между собой, передавая друг другу свои идеи, методы, достижения, открывая совместными усилиями новые возможности для человечества.
Посмотрите на историю иммунологии. Она родилась благодаря работам Пастера, Мечникова, Эрлиха и многих других, как ветвь микробиологии. Соприкоснувшись с хирургией, иммунология родила учение о несовместимости тканей при пересадках. Благодаря генетическим идеям возникла иммуногенетика, которая изучает закономерности передачи по наследству иммунологических признаков, изучает наследование групп крови. На стыке с эмбриологией родилось необычайно продуктивное учение об иммунологической толерантности, были созданы сфинксы.
Некоторые утверждают, что в наши дни интересные и важные открытия возникают только на стыках наук. Может быть, это и так. Но даже если это не совсем верно, представителям любой науки следует искать и устанавливать связи с другими специалистами как внутри своей отрасли, так и за ее пределами. А для этого необходим достаточный запас знаний, чтобы иметь возможность понимать и воспринимать идеи смежных отраслей.
Не трудно вспомнить крупнейшие теоретические обобщения и практические результаты из любой области наук, ставшие возможными благодаря идеям, пришедшим из смежных дисциплин. Я, как всегда, вспомню иммунологические примеры. Примеры, иллюстрирующие плодотворность взаимосвязи наук для теории и практики иммунологии.
Синтез идей, пришедших в иммунологию из генетики, биохимии и учения об эволюции, позволил Фрэнку Макферлену Бернету построить самую совершенную для наших дней теорию иммунитета.
Мужество объективности и Фрэнк Макферлен Бернет
Приходилось ли вам размышлять о мужестве ученого, о судьбе научных теорий, о горечи научного разочарования автора, когда становится очевидным, что его теория базировалась на опровергнутых наукой предпосылках?
О мужестве…
Кажется, уже все привыкли, что мужество ученого питается его верой в свою идею. Мужество ученого — это беззаветное отстаивание своей идеи, это костер, на который он готов взойти за нее. Но есть и другое мужество — признать, что ты не прав, что твоя теория не верна, что она устарела, что ее нельзя отстаивать. Мужество поражения. Впрочем, это не совсем то слово. Мужество объективности. Объективности в оценке собственных идей. Объективности в экспериментах, поставленных «за» и «против» себя, в мнениях других ученых. Мужество сказать: «Я был не прав».
Мы уже встречались на страницах этой книги с примерами мужества, неминуемо идущего в ногу с объективностью. На заре иммунитета, когда создавались первые его теории, во времена великой иммунологической дискуссии, ученые-соперники опровергали друг друга и самих себя и открыто признавали свои ошибки, свои неточности. Они проявляли мужество, они шли вперед. Собственно, в лагере ученых это не выдающееся явление — это норма. Совсем недавно академик Я.Б. Зельдович выступил против своей же теории вселенной и выдвинул весьма отличную точку зрения. Ученые не имеют права быть последователями кронинского героя Броуди, который говорил, что он не меняет свои мнения, ибо не считает себя в данный момент умнее, чем был раньше.
Ученый, если он убеждается, что был не прав, говорит: «Я был не прав». Говорит своими делами.