Чудесная жизнь клеток: как мы живем и почему мы умираем - Уолперт Льюис (книги бесплатно без регистрации полные .TXT) 📗
Микроскопический возбудитель, вызывающий это заболевание, весьма примечателен. Его нельзя отнести к вирусам обычного типа, поскольку он не содержит нуклеиновых кислот, а лишь одни белки. Такого рода микроорганизмы называют прионами; они не только вызывают заболевания, ведущие к разрушению нервной системы, но и вовлечены в длительные процессы воспроизводства красных кровяных телец. Белок приона присутствует в качестве обычного безопасного белка во многих наших клетках. Полагают, что он становится вредоносным и начинает неконтролируемо размножаться только в том случае, если по каким-то причинам его структура меняется, то есть происходит мутация.
Эволюция не позволяет себя обмануть. Наши клетки за время эволюции обзавелись отличной оборонительной системой, известной как адаптивная иммунная реакция, которая включается после того, как отработает врожденная иммунная система. Целью этой реакции является уничтожение вторгшихся инородных тел — бактерий и вирусов, а также вредоносных токсинов, которые те производят. Иммунная система вырабатывает особые белки — антитела, способные связываться с инородными молекулами, которые именуются антигенами. Связывание антител с антигенами приводит к уничтожению антигенов и тех клеток, к которым прикреплены антигены, на самой ранней стадии их существования.
Именно адаптивная иммунная система является основной защитой от всех окружающих человека инфекций. Она может спасти от смерти, которой грозит инфекция, и, что очень важно, вырабатывает иммунитет, способный защитить нас от всех будущих нападений этого вредоносного микроорганизма.
Поскольку клетки нашей адаптивной иммунной системы атакуют гигантское многообразие инородных клеток и молекул, они должны принимать особые меры предосторожности, чтобы не навредить при этом нормальным клеткам собственного тела. Они обязаны в любой момент различать своих и чужих. Иммунная система также не должна атаковать полезные инородные тела — например, молекулы пищи и полезные бактерии, которые живут в кишечнике и помогают переваривать пищу. Когда же вследствие какого-либо сбоя клетки адаптивной иммунной системы ошибаются, развивается аутоиммунная болезнь, при которой антитела атакуют органы собственного тела. Но к счастью, так происходит нечасто — в действительности умение клеток различать своих и чужих просто поразительно.
За адаптивный иммунитет отвечает особый класс белых кровяных телец — лимфоциты. В нашем теле содержится примерно столько же лимфоцитов, сколько и нервных клеток, — то есть миллиарды. Лимфоциты начинают действовать только тогда, когда врожденная иммунная система активизируется из-за вторжения инородных микроорганизмов, которые ищут для себя в теле человека удобное убежище с богатой питательной средой. Лимфоциты адаптивной иммунной системы способны узнавать весьма специфические признаки отдельных вредоносных микроорганизмов и деятельно атаковать незваных пришельцев.
Существует два основных типа лимфоцитов. В-лимфоциты вырабатывают антитела — белки, способные распознавать чужеродные антигены, а затем помечать их особым химическим кодом, чтобы в дальнейшем они были уничтожены другими клетками. Т-лимфоциты защищают тело, убивая инфицированные клетки организма или же побуждая инфицированные клетки освободиться от инфекции. Кроме того, они помогают В-лимфоцитам вырабатывать антитела.
Истоки происхождения этих двух видов лимфоцитов заключаются в кроветворной системе организма, однако происходят они при этом из различных органов тела. Местом зарождения и В-лимфоцитов, и Т-лимфоцитов является костный мозг, однако затем Т-лимфоциты переходят в вилочковую железу, чтобы продолжить там свое развитие и «научиться» не нападать на себе подобных. Те лимфоциты, которым сделать это не удается, подвергаются уничтожению.
По внешним признакам В-лимфоциты и Т-лимфоциты различить невозможно — даже с помощью электронного микроскопа. Их свойства активизируются лишь тогда, когда они входят в соприкосновение с антигеном. Тогда В-лимфоциты выделяют антитела, которые дезактивируют токсины, выделенные бактериями. Когда же антитела связываются непосредственно с бактериями или вирусами, они помечают их, чтобы впоследствии их могли распознать и уничтожить макрофаги. Т-лимфоциты не только убивают зараженные инфекцией клетки, но и содействуют активизации В-лимфоцитов и макрофагов. Благодаря Т-лимфоцитам в организме сохраняется иммунная память о конкретных бактериях и вирусах, что и служит основой вакцинации.
Каждый В-лимфоцит вырабатывает лишь один тип антител. Молекула антитела внедряется в клеточную оболочку, где служит в качестве клеточного рецептора, позволяющего опознавать соответствующий антиген. Затем, когда антиген связывается с этим рецептором, в В-лимфоците начинают вырабатываться и в значительном количестве выделяться необходимые антитела.
Простейшие антитела представляют собой молекулы в форме буквы «Y». Антиген связывается в этом случае с двумя поднятыми вверх «руками». Обычно же антитела — это весьма сложные по структуре белки, имеющие дополнительные участки для связывания с антигенами. Базовая структура наиболее распространенного типа антител состоит из четырех коротких белковых цепочек — двух тяжелых и двух легких (последние легче за счет того, что располагают меньшим числом аминокислот). Концы этих цепочек сходятся вместе, образуя участки для связывания с антигенами. Именно последовательность аминокислот в участках для связывания с антигенами придает антителам неповторимость и разнообразие.
Установлено, что иммунная система способна вырабатывать многие триллионы различных молекул антител. Очевидно, что за выработку каждого отдельного типа антител не может отвечать отдельный ген, поскольку количество вариаций антител намного превышает общее количество генов в организме человека — их насчитывается около 30 тысяч. Вместо этого клетки изобрели весьма умный механизм, основанный на принципе соединения относительно небольшого количества генных сегментов в различных комбинациях, чтобы синтезировать белки антител. Например, комбинация так называемой «легкой цепочки» молекулы антитела определяется определенным участком одной из наших хромосом. В состав этого участка хромосомы входят наборы копий сегментов генов «V» и «J». Прежде чем может быть синтезировано антитело, один из отрезков сегмента гена «V», например отрезок V34, комбинируется с одним из отрезков сегмента гена «J», например J21, и создает последовательность цепочки ДНК, которая станет кодировать изменяемую часть легкой цепочки антитела. После того как эти изменения в структуре В-лимфоцита состоятся, ничего больше в нем меняться уже не будет — этот лимфоцит станет вырабатывать только антитела с отрезками сегментов V34 и J21, которые будут содержаться в легкой цепочке этих антител. В результате схожего процесса образуется и работающая генная матрица для синтеза «тяжелой цепочки» антитела.
Процесс комбинирования сегментов генных участков происходит в каждом развивающемся лимфоците. Эти комбинации способны привести к образованию гигантского разнообразия вариаций антител, исчисляемого миллиардами.
Комбинация молекул в разном порядке с целью придания получающимся образованиям различных функций является крайне важным и мощным инструментом в арсенале клеток.
Лимфоциты постоянно циркулируют в крови, но лишь некоторые из них столкнутся с конкретным антигеном и опознают его. Когда В-лимфоцит встречает антиген, который связывается с его антителом, то он начинает делиться и образует большое количество одинаковых клеток, предназначенных для производства и выделения в кровь этого конкретного антитела. Некоторые из этих клеток сохраняются в организме на протяжении длительного времени, так что если соответствующий антиген объявится вновь, то его сразу встретят готовые к борьбе лимфоциты. Этот механизм лежит в основе принципов вакцинации: иммунная система запоминает взаимодействие с антигеном, определяющим конкретный вредоносный микроорганизм — такой, как, например, вирус гриппа, — и если этот вирус вновь пойдет в атаку, организму будет чем ответить.