Энергия и жизнь - Печуркин Николай Савельевич (лучшие книги онлайн txt) 📗
Еще более эффективным, а главное химически и радиационно безопасным источником энергии для человечества может стать термоядерный синтез. Наверное, это — одна из самых сложных технологических задач, стоящих перед человечеством. Академик И. В. Курчатов называл ее «величайшей». С конца 50-х годов по инициативе Советского Союза работы по управляемому термоядерному синтезу стали вестись по международным программам, были сняты все завесы секретности с этой поистине интернациональной задачи. Поступательное движение по пути к управляемой термоядерной реакции становится все более ощутимым. Чтобы «зажечь» реакцию термоядерного синтеза, надо сжать плазму до плотности 10 триллионов ядер дейтерия и трития в 1 см3 и удерживать ее при температуре не ниже 200 млн °С в течение одной секунды. На современных токамаках, тороидальных камерах с аксиальным магнитным полем, удерживающим плазму, удалось достичь в начале 80-х годов либо нужного времени удержания плазмы с температурой около 20 млн °С, либо разогрева плазмы до 100 млн °С при более коротком времени удержания.
Имеется и другой путь к управлению термоядом — это инерциальное удержание плазмы. По этому способу на поверхность таблетки из смеси дейтерия и трития «обрушивается» огромная энергия в виде импульса лазерного излучения. Это приводит к гигантским температурам и давлениям в толще таблетки, при которых может начаться термоядерная реакция. На установках с мощными лазерами получены температуры в 100 млн °С. Для использования термоядерной энергии этим способом потребуется решить ряд дополнительных технологических задач, так как по сути, в данном случае, будет работать серия микровзрывов, в отличие от стационарного состояния плазмы в токамаках. Независимо от способа в начале 90-х годов нашего века можно ожидать разработки демонстрационного термоядерного реактора, т. е. такого, в котором полученная энергия будет не ниже энергии приложенной. И тогда путь к овладению «идеальным» источником энергии будет открыт. В самом деле, этот источник практически неисчерпаем, дейтерия в морской воде хватит на миллионы лет. Химического и радиоактивного загрязнения тоже практически нет, так как работа идет с водородом и гелием. Однако одна из самых сложных проблем, связанных с воздействием человека на биосферу, все же остается. Она относится к применению и атомного, и ядерного горючего. Это — проблема теплового загрязнения, или избыточного тепловыделения.
В конечном счете вся энергия, полученная человеком, превращается в тепло. А это означает, что возможен «перегрев» оболочки Земли со всеми последствиями: опустынивание в теплых регионах, таяние антарктических льдов и подъем уровня Мирового океана и т. д. По оценкам академика Н. Н. Семенова и ряду прогнозов, производство дополнительной энергии можно довести лишь до 3—5% от поступающей на Землю энергии Солнца. Это превышает современный уровень лишь в несколько сот раз. Следовательно, стабилизация должна наступить уже в ближайшие 200 лет, если мы будем использовать ядерное или ископаемое горючее.
Есть и другая перспектива роста энергетики, совершенно безопасная экологически: это более полное использование солнечной энергии, непосредственно поступающей на Землю. В этом случае не будет никакого загрязнения, включая и тепловое, так как работает энергия, уже пришедшая от Солнца и ранее бесполезно терявшаяся в виде сразу выделившегося тепла.
Широкое применение солнечной энергии, или развитие гелиоэнергетики, связано с преодолением ряда трудностей. В основе их лежит низкая концентрированность потока солнечной энергии. Несмотря на огромное общее количество энергии, поступающей от Солнца (более чем в 1000 раз выше энергопотребления человека), на каждый квадратный метр поверхности Земли приходится 100—200 Вт, в зависимости от географических координат. К этому надо добавить нерегулируемую облачность, изменения в течение дня и перерывы на ночное время. Низкая итоговая плотность потока солнечной энергии делает ее неконкурентоспособной с нынешними источниками, по крайней мере в ближайшие 15—20 лет. По современным экономическим оценкам энергия, полученная от солнечных батарей, пока в 100 раз дороже, чем поступающая с теплоэлектростанций. Однако, даже при теперешних способах преобразования солнечной энергии в электрическую, для удовлетворения СССР в энергии нужно «всего лишь» 10 тыс. км2. Много это или мало? Это — квадрат пустыни со стороной 100 км. Это меньше 1% территории, занятой под сельское хозяйство, и меньше площади, запятой в настоящее время угольными шахтами, нефтяными промыслами, нефтепроводами. Есть смысл приложить усилия для овладения солнечной энергией. В настоящее время существует несколько путей ее прямого использования. На физических и химических способах мы не будем останавливаться.
Заслуживают особого внимания направления работ, связанные с получением энергии из органики, накопленной не в прошлых биосферах, а образуемой в нашей биосфере под влиянием непосредственного потока энергии от Солнца. Пример такой возобновляемой органики давно известен — это древесина. Не зря ее доля в общем энергопотреблении резко упала уже к середине нашего века. Низкая калорийность — главная тому причина. А нельзя ли выращивать или получать продукт, близкий по теплотворной способности к самой нефти? Оказалось, что идея далеко не фантастическая, а вполне осуществимая. Есть целый ряд тропических деревьев, обычных кустарников и сорных трав, которые могут выделять в больших количествах соки — легкие углеводороды, близкие по энергетическим свойствам к типичным бензинам. Самые перспективные среди них — растения семейства молочаевых, чертополохи и многие сорта кактусов. Культивирование «нефтеносов» очень перспективно: при культивировании бразильских деревьев, и прежде всего знаменитого каучуконоса — гевеи, с одного гектара можно получить в год до железнодорожной цистерны жидкого топлива. При этом деревья практически не повреждаются, а древесина может использоваться в строительстве и для производства бумаги. Эксперименты показали, что себестоимость «выращенной» нефти приближается к себестоимости традиционной нефти.
Большие надежды возлагаются также на получение водорода с помощью биологических процессов. Водород привлекает внимание энергетиков из-за своей огромной энергоемкости. Не зря его называют топливом помер один для будущего, так как экологическая его чистота очевидна. Если его получать из воды электролизом, то при его сгорании, т. е. соединении с кислородом, снова образуется вода. Получается цикл. Если его осуществлять с помощью химического расщепления воды, то это энергетически невыгодно. Мы знаем, что растения умеют это делать быстро и хорошо, надо только научиться забирать у них хотя бы часть водорода до того, как он вступит в реакцию синтеза. Наибольшие надежды в этом направлении связываются с хорошо знакомыми нам синезелеными водорослями. Разрабатываются также синтетические аналоги живых фотосинтезирующих систем. Трудно сказать, на каком пути ждет наибольший выигрыш, но уже по современным оценкам с квадратного метра поверхности, освещаемой Солнцем, можно получить за день около 20 г фотоводорода, т. е. около 20 т с квадратного километра. И снова, по ориентировочным расчетам, участок пустыни 140×140 км сможет удовлетворить все энергетические нужды страны. До реального осуществления таких проектов очень далеко, сделаны лишь первые шаги. В самое последнее время удалось увеличить выделение фотоводорода у цианобактерий более чем в 20 раз, используя новые штаммы. Развитие методов генной инженерии позволяет надеяться на быстрое продвижение на этом пути.
Заканчивая анализ развития энергетики человечества, подчеркнем несколько наиболее существенных моментов. Прежде всего это ускорение роста энергообеспеченности человека, непосредственно связанное с развитием общественно-экономических отношений. Если политика — это концентрированная экономика, то экономика — это концентрированная энергетика. Производительность труда как главный показатель уровня экономики базируется на энергообеспеченности. Однако экспоненциальный рост энергетики не может продолжаться, как мы видели, даже в течение ближайших столетий.