Кризис аграрной цивилизации и генетически модифицированные организмы - Глазко Валерий Иванович
В томаты встроены два гена ферментов, катализирующих синтез веществ, повышающих устойчивость к фитофторозу, что привело к повышению на 65% их устойчивости по сравнению с контролем. Другие исследователи трансформировали огурцы геном хитиназы риса, повысившим резистентность к серой плесени.
Управление программируемой гибелью клеток (апоптозом). Апоптоз — контролируемая гибель клеток, которая является одним из защитных механизмов растений, когда в ответ на атаку патогена происходит синтез цитотоксичных соединений в пораженных клетках и локальная гибель клеток — так называемая сверхчувствительность. В процессе развития растений программированная гибель клеток (ПГК) наблюдается при старении органов, созревании плодов, ксилогенезе, старении створок бобов и тд. В клетках, претерпевающих ПГК, отмечается активность протеаз и нуклеаз, деградирующих белки и нуклеиновые кислоты. Эти протеазы включают цистеиновые, металлотиониновые, сериновые протеазы, а также ингибиторы аспарагиновой кислоты.
В настоящее время еще не ясны детали ПГК клеток растений, однако уже показано, что основные этапы ПГК клеток животных и растений одинаковы.
Морфологически это наблюдается в виде сморщивания цитоплазмы, конденсации ядра, образовании везикул мембран. Биохимические изменения включают приток ионов кальция, высвобождение фосфатидилсерина, активацию специфических протеаз, фрагментацию ДНК.
Проникающий в клетку инфекционный агент использует клетки растения-хозяина как субстрат для своего роста, развития и размножения. Одним из путей защиты растений является гибель инфицированных клеток. В то же время, субстратом некоторых грибов являются именно мертвые клетки.
Поэтому предотвращение гибели клеток в некоторых случаях делает невозможным рост и развитие патогена, что препятствует его распространению у растения. В этой связи разрабатываются методы контроля апоптоза.
Разработка приемов управления апоптозом путем использования ДНК-технологий — один из путей повышения иммунитета растений к инфекциям. Это достигается путем введения генов, которые управляют апоптозом.
Приведем несколько примеров таких работ.
Предотвращение гибели клеток в некоторых случаях делает невозможным рост и развитие паразита, чем препятствует его распространению в растении. Гриб Sclerotinia sclerotiorum выделяет токсин, летальный для клеток растений хозяев, и использует вещества мертвых клеток для питания. Растения табака были трансформированы геном нематоды CED-9, который ингибировал апоптоз. Трансгенные растения имели повышенную резистентность к данному возбудителю и останавливали его распространение из точки инокуляции. Данная работа интересна не только тем, что предлагает новую стратегию усиления механизмов защиты растений, но и тем, что демонстрирует общность путей контроля апоптоза у растений и животных (Dickman). Трансгенные томаты, несшие ген бакуловируса р35, ингибирующий апоптоз, также имели усиленную резистентность к возбудителям грибковых и бактериальных инфекций. К подобным выводам пришел Дэвид Гилчрист (Калифорнийский университет), выполняя работу по изучению действия микотоксинов на клетки животных и растений. Он сообщил, что один из токсинов (сфинганин), который вызывает лизис тканей мозга лошадей, также вызывает апоптоз у инфицированных растений. Был также сделан вывод, что грибы создают себе субстрат путем стимулирования апоптоза, поэтому его ингибирование может предотвращать развитие грибной инфекции.
Подход, обратный описанному выше, и заключающийся в стимулировании апоптоза, также может быть использован для защиты растений от инфекций.
Компанией Монсанто разработан способ получения трансгенных растений, устойчивых как к бактериальной, так и грибной инфекции. В картофель вводят грибной ген, кодирующий синтез фермента, окисляющего глюкозу с образованием пероксида водорода. Полученные растения устойчивы и к мягкой гнили, и к фитофторе.
Относительно недавно открыты короткие пептиды, богатые остатками цистеина, обладающие антимикробными свойствами. Они названы дефензинами.
В настоящее время созданы трансгенные растения томатов, картофеля, рапса, моркови, яблони и груши с геном дефензинов редьки. Аналогичная работа проводится по созданию трансгенной капусты и малины.
Устойчивость к вирусам и вироидам
Одним из первых достижений в защите растений методами генетической инженерии явилось создание трансгенных растений, устойчивых к вирусам, путем встройки в геном хозяина генов белков вирусной оболочки.
Устойчивость обычно ограничена только вирусом, ген оболочки которого трансформирован в донорное растение. Причем эта устойчивость может быть настолько специфической, что может проявляться только для мутантной формы вируса и не срабатывать для вируса дикого типа, если введен ген белка оболочки этого мутантного вируса.
Один из оригинальных методов защиты растений от вирусов с помощью трансгеноза предложен В. Шибальским еще в 1988 г. Его сущность заключается во введении в геном растений транс-действующих доминантных летальных генов или, по терминологии Шибальского, «антигенов»), которые кодируют измененные мутациями белки вирусов, существенные для их воспроизводства, и путем конкурентного замещения соответствующих белков вируса дикого типа прерывают его размножение. С использованием такого подхода удалось получить очень высокую устойчивость растений к вирусу X картофеля (PVX). В этом случае в ген репликазы PVX с помощью направленного мутагенеза вводили мутации, сопровождающиеся заменой аминокислот в консервативном участке полипептидной цепи репликазы, ассоциированном с ее каталитическим сайтом. Для экспрессии мутантного трансгена в растениях табака были характерны внутриклеточное накопление инактивированной репликазы и появление высокой устойчивости растений к заражению вирусом PVX.
Со времени обнаружения в 1986 г. факта устойчивости растений табака к вирусу табачной мозаики при введении гена белка оболочки этого вируса, подобная устойчивость получена для большого количества вирусов различных таксономических групп. Уже проведены полевые испытания устойчивых к вирусам растений, полученных при использовании этих подходов.
При введении в растения риса гена, кодирующего белок оболочки вируса hoja Ыаnса, наносящего значительные потери урожая в странах тропической Америки, отмечено ослабление симптомов поражения, увеличение различных агрономических показателей. Трансгенные растения с самым высоким уровнем экспрессии трансгена имели только один или несколько листьев с симптомами вирусного поражения.
Один из коммерческих сортов картофеля (Бзура) был трансформирован конструкцией гена оболочки вируса курчавости листьев в смысловой и антисмысловой ориентации. В смысловой ориентации структурной части этого гена предшествовала лидерная последовательность короче, чем таковая у субгеномной РНК, образующейся у инфицированных клеток.
Антисмысловая конструкция включала последовательность, комплементарную первым 2020 нуклеотидам субгеномной РНК.
Трансгенные растения, экспреccирующие вирусную РНК, были устойчивы к вирусу при поражении тлями — переносчиками вируса. У одной линии с антисмысловой ориентацией гена инфекция отсутствовала даже при прививке растений на инфицированные подвои.
Получены трансгенные растения различных сортов гороха с геном белка оболочки вируса мозаики люцерны, вызывающим значительные потери урожая и снижение качества семян. Идентифицированы 3 линии трансгенных растений гороха, потомство которых было устойчивым при механической инокуляции этим вирусом.
Другой современный подход к получению трансгенных растений, устойчивых к вирусам, основан на введении в них трансгенов, синтезирующих в клетках моноклональные антитела, направленные против вирусных белков. В одной из работ с использованием такого метода создали эффективную систему защиты растений от вируса морщинистой мозаики артишока.
Еще одним способом является введение генов, кодирующих РНК-зависимую РНК-полимеразу (репликазу). В ряде случаев эта устойчивость была достаточно высокой, чтобы полностью подавить накопление вирусов в инокулированных растениях.