В поисках памяти - Кандель Эрик Ричард (книги серии онлайн .txt) 📗
Чтобы непосредственно проверить эту идею, Ходжкин, Хаксли и Кац применили к гигантскому аксону кальмара метод фиксации потенциала — недавно разработанную технологию, позволяющую измерять ток ионов через клеточную мембрану. Они вновь подтвердили вывод Бернштейна, что потенциал покоя создается неравномерным распределением ионов калия по разные стороны клеточной мембраны. Кроме того, они подтвердили и свое собственное наблюдение, что после достаточно сильной электрической стимуляции мембраны ионы натрия поступают в клетку в течение приблизительно 0,001 секунды, меняя напряжение на мембране с -70 до +40 милливольт и тем самым обеспечивая фазу нарастания потенциала действия. За усиленным притоком натрия почти сразу следует резкое усиление оттока калия, которое обеспечивает реполяризацию мембраны и возвращает мембранный потенциал к его исходному значению.
Но как клеточная мембрана регулирует эти изменения проводимости для ионов натрия и калия? Ходжкин и Хаксли предположили, что существуют ионные каналы особого, ранее не предвиденного класса, у которых имеются «дверцы» или «ворота», способные открываться и закрываться. Согласно их гипотезе, по мере распространения потенциала действия по аксону ворота натриевых, а сразу вслед За ними и калиевых каналов открываются и вскоре закрываются. Ходжкин и Хаксли также поняли, что, поскольку эти ворота открываются и закрываются очень быстро, воротный механизм должен регулироваться разностью потенциалов на клеточной мембране. Поэтому они назвали такие натриевые и калиевые каналы потенциал-зависимыми каналами (voltage-gated channels [16]). В свою очередь, каналы, открытые Бернштейном и ответственные за поддержание потенциала покоя, получили название проточных калиевых каналов, так как они не имеют ворот и на них не действует разность потенциалов на клеточной мембране.
Когда нейрон пребывает в состоянии покоя, потенциалзависимые каналы закрыты. Когда стимулятор повышает мембранный потенциал до порогового уровня, например с -70 до -55 милливольт, потенциал-зависимые натриевые каналы открываются, и ионы натрия устремляются внутрь клетки, вызывая краткое, но резкое увеличение количества положительных зарядов и поднимая мембранный потенциал до +40 милливольт. В ответ на это изменение мембранного потенциала натриевые каналы, открывшись на некоторое время, закрываются, а потенциал-зависимые калиевые каналы ненадолго открываются, увеличивая отток положительно заряженных ионов калия из клетки и быстро возвращая мембранный потенциал к состоянию покоя, — 70 милливольт (рис. 5–5).
5–5. Модель потенциала действия Ходжкина — Хаксли, полученная благодаря использованию внутриклеточного электрода. Приток положительно заряженных ионов натрия (Na+) меняет суммарный заряд внутри клетки и вызывает нарастание потенциала действия. Почти сразу открываются и калиевые каналы, и ионы калия (K+) вытекают из клетки, обеспечивая реполяризацию мембраны и возвращая мембранный потенциал на исходный уровень.
Каждый потенциал действия оставляет клетку с большим, чем должно быть, количеством натрия внутри и с большим количеством калия снаружи. Ходжкин выяснил, что этот дисбаланс исправляется особым белком, который транспортирует избыточные ионы натрия из клетки, а ионы калия — в клетку. В конечном итоге исходные градиенты концентраций натрия и калия восстанавливаются.
После того как потенциал действия возникает на одном участке аксона, создаваемый при этом ток возбуждает соседние участки, вызывая потенциал действия и на них. Происходящая в результате цепная реакция обеспечивает передачу потенциала действия по всей длине аксона от места, где он был вызван первоначально, до окончаний аксона, подходящих к другому нейрону (или мышечной клетке). Этим способом от одного конца нейрона к другому передаются сигналы, обеспечивающие зрительные ощущения, движения, мысли и воспоминания.
За свою концепцию, теперь известную как ионная гипотеза, в 1963 году Ходжкин и Хаксли вместе получили Нобелевскую премию по физиологии и медицине. Впоследствии Ходжкин говорил, что премия должна была достаться кальмару, гигантский аксон которого сделал их эксперименты возможными. Но это проявление скромности не отдает должного сделанным этими двумя исследователями замечательным открытиям — открытиям, которые дали научному сообществу, в том числе новообращенным вроде меня, уверенность в том, что мы сможем разобраться в передаче сигналов в мозгу и на более глубоком уровне.
Когда в нейробиологии стали применять молекулярно-биологические методы, выяснилось, что потенциал-зависимые натриевые и калиевые каналы представляют собой белки. Молекулы этих белков пронизывают клеточную мембрану насквозь и содержат заполненный жидкостью проход — ионную пору, по которой канал и пропускает ионы. Ионные каналы имеются в каждой клетке тела, не только в нейронах, и все они поддерживают мембранный потенциал покоя По тому же принципу, который некогда сформулировал Бернштейн.
Ионная гипотеза примерно так же, как до нее нейронная доктрина, упрочила связь между клеточной биологией мозга и другими областями клеточной биологии. Она окончательно доказала, что в работе нервных клеток можно разобраться, используя физические принципы, общие для всех клеток. Что особенно важно, ионная гипотеза подготовила почву для изучения механизмов передачи нейронных сигналов на молекулярном уровне. Универсальность и предсказательная сила ионной гипотезы объединили в единую дисциплину клеточные исследования нервной системы: эта гипотеза сделала для клеточной биологии нейронов то же, что открытие структуры ДНК — для всей биологии.
В 2003 году, через пятьдесят один год после того, как была сформулирована ионная гипотеза, Родерик Маккиннон из Рокфеллеровского университета удостоился Нобелевской премии по химии за получение первых трехмерных изображений расположения атомов в молекулах двух ионных каналов — проточного калиевого и потенциалзависимого калиевого. Некоторые свойства, выявленные Маккинноном путем весьма новаторского структурного анализа этих двух белков, уже были предсказаны с поразительной проницательностью Ходжкином и Хаксли.
Поскольку движение ионов по каналам через клеточную мембрану имеет принципиальное значение для работы нейронов, а работа нейронов — принципиальное значение для психической деятельности, неудивительно, что мутации в генах, кодирующих белки ионных каналов, вызывают болезни. В 1990 году стало возможным сравнительно несложное и точное определение молекулярных дефектов, ответственных за генетические болезни человека. Вскоре после этого один за другим были выявлены дефекты ионных каналов, лежащие в основе ряда неврологических нарушений работы мышц и мозга.
Такие нарушения теперь называют каналопатиями, или нарушениями функции ионных каналов. К примеру, наследственная идиопатическая эпилепсия (наследственная эпилепсия новорожденных) оказалась связана с мутациями в генах, кодирующих белок калиевого канала. Последними достижениями в исследовании каналопатий и разработкой специфических методов лечения этих нарушений мы непосредственно обязаны обширному запасу знаний о работе ионных каналов, накопленному благодаря Ходжкину и Хаксли.
6. Разговор нервных клеток
Я пришел в лабораторию Гарри Грундфеста в 1955 году, вскоре после того, как в нейробиологии возник серьезный спор о том, как нейроны передают сигналы друг другу. Эпохальные работы Ходжкина и Хаксли позволили разрешить давнюю загадку, как электрические сигналы возникают в нейронах, но как они распространяются между нейронами? Чтобы один нейрон мог «говорить» с другим, он должен посылать сигнал через синапс, промежуток между клетками. Что же это за сигнал?
Грундфест и другие ведущие нейрофизиологи того времени твердо верили, пока в начале пятидесятых их представления не опровергли, что этот краткий сигнал, передающийся через промежуток между клетками, имеет электрическую природу, что потенциал действия в постсинаптическом нейроне начинается благодаря электрическому току, вызванному потенциалом действия в пресинаптическом нейроне. Но начиная с конца двадцатых стали накапливаться данные, свидетельствующие о том, что сигнал, передающийся между некоторыми нервными клетками, может иметь химическую природу. Эти данные были получены в ходе исследований нейронов вегетативной или автономной нервной системы. Вегетативная нервная система считается частью периферической, потому что тела ее нейронов располагаются в скоплениях, называемых периферическими вегетативными ганглиями, которые находятся возле самого спинного мозга и мозгового ствола, но за их пределами. Автономная нервная система управляет жизненно важными непроизвольными действиями, такими как дыхание, сердцебиение, поддержание кровяного давления и пищеварение.