Общая биология: конспект лекций - Козлова Е. А. (книги онлайн читать бесплатно TXT) 📗
8) репродукция (воспроизведение). Так как жизнь существует в виде отдельных (дискретных) живых системы (например, клеток), а существование каждой такой системы строго ограничено во времени, поддержание жизни на Земле связано с репродукцией живых систем. На молекулярном уровне воспроизведение осуществляется благодаря матричному синтезу, новые молекулы образуются по программе, заложенной в структуре (матрице) ранее существовавших молекул;
9) наследственность. Обеспечивает преемственность между поколениями организмов (на основе потоков информации).
Тесно связана с ауторепродукцией жизни на молекулярном, субклеточном и клеточном уровнях. Благодаря наследственности из поколения в поколение передаются признаки, которые обеспечивают приспособление к среде обитания;
10) изменчивость – свойство, противоположное наследственности. За счет изменчивости живая система приобретает признаки, ранее ей несвойственные. В первую очередь изменчивость связана с ошибками при репродукции: изменения в структуре нуклеиновых кислот приводят к появлению новой наследственной информации. Появляются новые признаки и свойства. Если они полезны для организма в данной среде обитания, то они подхватываются и закрепляются естественным отбором. Создаются новые формы и виды. Таким образом, изменчивость создает предпосылки для видообразования и эволюции;
11) индивидуальное развитие (процесс онтогенеза) – воплощение исходной генетической информации, заложенной в структуре молекул ДНК (т. е. в генотипе), в рабочие структуры организма. В ходе этого процесса проявляется такое свойство, как способность к росту, что выражается в увеличении массы тела и его размеров. Этот процесс базируется на репродукции молекул, размножении, росте и дифференцировке клеток и других структур и др.;
12) филогенетическое развитие (закономерности его установлены Ч. Р. Дарвином). Базируется на прогрессивном размножении, наследственности, борьбе за существование и отборе. В результате эволюции появилось, огромное количество видов. Прогрессивная эволюция прошла ряд ступеней. Это до-клеточные, одноклеточные и многоклеточные организмы вплоть до человека.
При этом онтогенез человека повторяет филогенез (т. е. индивидуальное развитие проходит те же этапы, что и эволюционный процесс);
13) дискретность (прерывистость) и в то же время целостность. Жизнь представлена совокупностью отдельных организмов, или особей. Каждый организм, в свою очередь, также дискретен, поскольку состоит из совокупности органов, тканей и клеток. Каждая клетка состоит из органелл, но в то же время автономна. Наследственная информация осуществляется генами, но ни один ген в отдельности не может определять развитие того или иного признака.
4. Уровни организации жизни
Живая природа – это целостная, но неоднородная система, которой свойственна иерархическая организация. Иерархической называется такая система, в которой части (или элементы целого) расположены в порядке от высшего к низшему. Иерархический принцип организации позволяет выделить в живой природе отдельные уровни, что весьма удобно при из-учении жизни как сложного природного явления. Можно выделить три основные ступени живого: микросистемы, мезосистемы и макросистемы.
Микросистемы (доорганизменная ступень) включают в себя молекулярный (молекулярно-генетический) и субклеточный уровни.
Мезосистемы (организменная ступень) включают в себя клеточный, тканевый, органный, системный, организменный (организм как единое целое), или онтогенетический, уровни.
Макросистемы (надорганизменная ступень) включают в себя популяционно-видовой, биоценотический и глобальный уровни (биосферу в целом). На каждом уровне можно выделить элементарную единицу и явление.
Элементарная единица (ЭЕ) – это структура (или объект), закономерные изменения которой (элементарные явления, ЭЯ) составляют ее вклад в развитие жизни на данном уровне.
Иерархические уровни:
1) молекулярно-генетический уровень. ЭЕ представлена геном. Ген – это участок молекулы ДНК (а у некоторых виру-сов-молекулы РНК), который ответствен за формирование какого – либо одного признака. Информация, заложенная в нуклеиновых кислотах, реализуется посредством матричного синтеза белков;
2) субклеточный уровень. ЭЕ представлена какой-либо субклеточной структурой, т. е. органеллой, которая выполняет свойственные ей функции и вносит свой вклад в работу клетки в целом;
3) клеточный уровень. ЭЕ – это клетка, которая является самостоятельно функционирующей элементарной биологической системой. Только на этом уровне возможны реализация генетической информации и процессы биосинтеза. Для одноклеточных организмов этот уровень совпадает с организменным. ЭЯ – это реакции клеточного метаболизма, составляющие основу потоков энергии, информации и вещества;
4) тканевый уровень. Совокупность клеток с одинаковым типом организации составляет ткань (ЭЕ). Уровень возник с появлением многоклеточных организмов с более или менее дифференцированными тканями. Ткань функционирует как единое целое и обладает свойствами живого;
5) органный уровень. Образован совместно с функционирующими клетками, относящимися к разным тканям (ЭЕ). Всего четыре основные ткани входят в состав органов многоклеточных организмов, шесть основных тканей образуют органы растений;
6) организменный (онтогенетический) уровень. ЭЕ – это особь в ее развитии от момента рождения до прекращения ее существования в качестве живой системы. ЭЯ – это закономерные изменения организма в процессе индивидуального развития (онтогенеза). В процессе онтогенеза в определенных условиях среды происходит воплощение наследственной информации в биологические структуры, т. е. на основе генотипа особи формируется ее фенотип;
7) популяционно-видовой уровень. ЭЕ – это популяция, т. е. совокупность особей (организмов) одного вида, населяющих одну территорию и свободно скрещивающихся между собой. Популяция обладает генофондом, т. е. совокупностью генотипов всех особей. Воздействие на генофонд элементарных эволюционных факторов (мутаций, колебаний численности особей, естественного отбора) приводит к эволюционно значимым изменениям (ЭЯ);
8) биоценотический (экосистемный) уровень. ЭЕ – биоценоз, т. е. исторически сложившееся устойчивое сообщество популяций разных видов, связанных между собой и с окружающей неживой природой обменом веществ, энергии и информации (круговоротами), которые и представляют собой ЭЯ;
9) биосферный (глобальный) уровень. ЭЕ – биосфера (область распространения жизни на Земле), т. е. единый планетарный комплекс биогеоценозов, различных по видовому составу и характеристике абиотической (неживой) части. Биогеоценозы обусловливают все процессы, протекающие в биосфере;
10) носферный уровень. Это новое понятие было сформулировано академиком В. И. Вернадским. Он основал учение o ноосфере как сфере разума. Это составная часть биосферы, которая изменена благодаря деятельности человека.
ЛЕКЦИЯ № 2. Химический состав живых систем. Биологическаяроль белков, полисахаридов, липидов и АТФ
1. Обзор химического строения клетки
Все живые системы содержат в различных соотношениях химические элементы и построенные из них химические соединения, как органические, так и неорганические.
По количественному содержанию в клетке все химические элементы делят на 3 группы: макро-, микро– и ультрамикроэлементы.
Макроэлементы составляют до 99 % массы клетки, из которых до 98 % приходится на 4 элемента: кислород, азот, водород и углерод. В меньших количествах клетки содержат калий, натрий, магний, кальций, серу, фосфор, железо.
Микроэлементы – преимущественно ионы металлов (кобальта, меди, цинка и др.) и галогенов (йода, брома и др.). Они содержатся в количествах от 0,001 % до 0,000001 %.
Ультрамикроэлементы. Их концентрация ниже 0,000001 %. К ним относят золото, ртуть, селен и др.