Путешествие в страну микробов - Бетина Владимир (чтение книг TXT) 📗
Интересные образования находятся и в цитоплазме бактериальных «палочек» или бацилл — это споры. Но об их специфических особенностях будет рассказано несколько позже.
Электронный микроскоп проникает в тайны микромира
Исследователей, вооружившихся в целях познания электронным микроскопом, привлекают не только бактерии, но и многие другие микроорганизмы. Они изучают поверхностную структуру клеточных стенок или, подобно хирургам, приготовляют ультратонкие срезы мельчайших клеток и проникают в тайны их внутреннего мира.
Профессора Волькани из Калифорнийского университета заинтересовали диатомовые водоросли. Эти организмы откладывают в стенках своих клеток большое количество кремнезема. После кратковременной обработки этих клеток кислотой электронный микроскоп помог нам открыть сетчатое строение их панциря, а ультрамикротом — заглянуть внутрь клетки и обнаружить ее ядро и множество жировых капелек (фото 20 и 21).
Не менее интересным оказалось и строение клетки простейшего, туфельки Paramecium bursaria, в которой, помимо прочих включений, были обнаружены мелкие клетки зеленой водоросли из рода Chlorella. Так электронный микроскоп позволил установить между этим простейшим и водорослями взаимоотношения, известные под названием симбиоза (фото 22).
В предыдущей главе мы узнали, что грибы размножаются с помощью особых клеток — спор. Интересные данные были получены в Лаборатории электронной микроскопии Высшей федеральной технической школы в Цюрихе. У спор грибов, относимых специалистами к роду Penicillium, была обнаружена своеобразная поверхностная структура. Споры каждого вида выглядят так, точно искусная рука корзинщицы оплела их особым узором (фото 23).
Доктор Янг из Лондонского университета занимался изучением поверхностной структуры спор микроскопических грибов, относимых микологами к порядку Mucorales. У большей части изученных видов споры снабжены тонкими отростками. При взгляде на такую спору в памяти возникает образ обычного оружия гуситов — булавы с острыми шипами. Эти шиповатые выросты имеют в основании правильные шестиугольники и очень равномерно распределены по поверхности споры (фото 24).
Ценные услуги оказал электронный микроскоп и группе исследователей во главе с профессором Нечасом (медицинский факультет в городе Брно). При помощи фермента, выделяемого виноградной улиткой, удалось растворить клеточные стенки дрожжевых грибов и выделить их протопласты. Это очень хрупкие образования, но в руках искусных специалистов они становятся отличным материалом, на котором можно наблюдать формирование клеточных стенок. После перенесения протопластов на обычную питательную среду вокруг них начинают образовываться новые стенки клеток (фото 25 и 26).
Разделение труда в клетке
Какова же роль отдельных клеточных образований, с которыми мы только что познакомились? Этот вопрос встал перед исследователями; вполне естественно, что его задаст и читатель, узнавший об их открытии.
О защитной функции клеточных стенок мы уже говорили, так же как и о том, что они определяют постоянную, характерную для различных бактерий форму. Если стенку бактериальной палочки отделить от ее содержимого, то протопласт потеряет форму палочки и превратится в шар, сохранив, однако, все свои основные жизненные функции.
Роль цитоплазматической мембраны довольно разнообразна. Ее самая главная и важная функция — поддерживать в клетке определенное осмотическое давление. Сквозь мембрану в клетку поступают вещества, служащие ей источником питания, и выделяются наружу продукты химической активности клетки. Таким образом, цитоплазматическая мембрана играет как бы роль пограничной стражи, которая пропускает внутрь клетки или высылает за ее пределы «избранные» соединения, по-видимому, активно способствуя этому обмену. У простейших, чьи клетки лишены стенок, цитоплазматическая мембрана дает возможность организму изменять форму и вбирать в себя твердые частицы пищи, как при фагоцитозе. Такой же механизм наблюдается и у белых кровяных телец, которые обезвреживают болезнетворные микробы, «поглощая» их.
Ядро — важный жизненный центр клетки. В нем представлен своего рода «планирующий орган», управляющий ее деятельностью и обеспечивающий передачу наследственных особенностей от одной генерации другой. Далее мы увидим, что ответственность за эту операцию несут молекулы дезоксирибонуклеиновой кислоты (ДНК).
В клетках дрожжей и других микроорганизмов, как и в клетках растений и животных, находятся также митохондрии — своего рода энергетические станции клеток. В них протекают процессы химического преобразования веществ, благодаря которым клетка приобретает основную часть необходимой ей энергии. Впрочем, уже точно установлено, что эти процессы происходят и в клетках бактерий, хотя в них митохондрии отсутствуют.
В цитоплазме микробов содержатся образования, называемые рибосома-м и, которые являются центрами синтеза белка в клетке.
Таким образом, мы видим, что в клетке как основной единице живой природы царит строгий порядок и осуществляется целесообразное разделение труда.
Химия и микроорганизмы
Рассказ о таинствах микробных клеток был бы неполным, если бы не содержал сведений, раскрывающих их химические особенности.
Все вещества в природе, входят ли они в состав живых организмов или залегают в глубинах Земли, состоят из основных структурных единиц — атомов различных химических элементов. В результате химического соединения отдельных атомов возникают более крупные единицы— молекулы. Молекула воды, обозначаемая химиками формулой Н20, состоит из двух атомов водорода и одного атома кислорода. Таким образом, вода — это соединение двух элементов, связанных химически в определенных соотношениях. Молекула воды настолько мала, что она невидима даже в электронный микроскоп. Мельчайшие бактерии достигают в диаметре 200 нм, капелька воды такой же величины содержит до 68 000 000 молекул.
Кроме кислорода и водорода, известно еще более 100 химических элементов. Некоторые из них встречаются свободными в природе, другие удалось выделить искусственным путем. Не менее половины всех элементов обнаружили и в клетках микроорганизмов. Из химических элементов, встречающихся в живой природе, помимо водорода и кислорода, очень важную роль играют углерод и азот.
Элементы, постоянно присутствующие в живых организмах, включая и микробы, называют биогенными. О четырех из них мы уже упоминали. К другим, также очень важным биогенным элементам, относятся фосфор, сера, калий, хлор, магний, натрий, кальций. Эти 11 вышеупомянутых элементов мы называем макроэлементами. В весовом отношении они составляют около 99,9 % сухой массы клеток, причем на первые четыре элемента приходится почти 95 %.
В ничтожно малой оставшейся части — 0,1 % сухой массы — представлен целый ряд микроэлементов: железо, медь, марганец, кобальт, бром, йод, фтор, бор, кремний, литий, рубидий, стронций, барий, цинк, ртуть, алюминий, таллий, титан, свинец, мышьяк, селен, никель, ванадий и серебро. В отличие от макроэлементов, входящих в состав клеточного вещества, некоторые микроэлементы имеют лишь характер катализаторов, ускоряющих или замедляющих процессы химических изменений в организме, причем эту роль они выполняют, входя в состав ферментов.
Как видно из таблицы, содержание отдельных элементов в живой природе и в земной коре очень различно. Живые организмы берут из природных запасов только такие количества веществ, которые отвечают их жизненным потребностям. Количественные соотношения биогенных элементов в живых организмах всегда строго поддерживаются на одном и том же уровне.
Химическое изучение веществ живой материи открыло много интересного. Мы узнали, что в клетках организмов встречаются самые разнообразные вещества. Наиболее важными соединениями среди них являются вода, белки, нуклеиновые кислоты, простые и сложные сахара и жиры. Сопоставление содержания перечисленных соединений в живой материи и относительное содержание молекул этих веществ представлены в таблице 2.