Расширенный фенотип: Дальнее влияние гена - Докинз Ричард (бесплатные книги онлайн без регистрации .TXT) 📗
Глава 12. Фенотипы хозяев как экспрессия генов паразитов
Давайте бегло осмотримся в точке, которой мы достигли на нашем марше во внешний мир. Фенотипическая экспрессия гена может простираться за пределы клетки, в которой проявляется его непосредственное биохимическое влияние; она затрагивает макроскопические особенности всего многоклеточного тела. Для нас это должно быть уже банальностью, ибо мы уже привыкли к идее о фенотипической экспрессии гена, распространяющейся вдаль.
В предыдущей главе мы сделали маленький шаг в дальнейшем распространении фенотипа на изделия, изготовление которых было индивидуальным поведением, подверженным генетическим вариациям – например на домики ручейника. Затем мы увидели, что расширенный фенотип может быть продуктом объединённого влияния генов более чем одного индивидуального тела. Бобровые плотины и термитники строятся совместными поведенческими усилиями более чем одного индивидуума. Генетическая мутация у одной особи бобра может проявить себя в фенотипическом изменении продукта совместного поведения. Если фенотипическое изменение в этом продукте оказало влияние на успех в репликации нового гена, то работа естественного отбора – позитивно или негативно – изменит вероятность сооружения подобных изделий в будущем. Расширенный фенотипический эффект гена, типа увеличения высоты плотины, точно также затрагивает шансы на выживание, как и обычный фенотипический эффект другого гена, скажем – удлинняющего хвост. Тот факт, что плотина – продукт совместной деятельности семьи бобров, не меняет нашего принципа: гены, побуждающие бобров строить высокие плотины, в общем и среднем будут пожинать плоды (позитивные или негативные) высоких плотин, даже при том, что каждая плотина может быть построена несколькими бобрами. Если у двух бобров, работающих над одной плотиной имеются разные гены высоты её, то итоговый расширенный фенотип отразит взаимодействие между генами точно так же, как продукт онтогенеза – тело животного – отражает взаимодействие генов. Расширенный фенотип точно так же может иметь генетические аналоги эпистаза, генов-модификаторов, и даже доминантности и рецессивности.
Наконец в конце главы мы увидели, что гены, «разделяющие» данную расширенную фенотипическую черту, могут принадлежать различным видам – более того, разным таксономическим типам и царствам. В этой главе развиваются две дальнейшие идеи. Первая состоит в том, что фенотипы, простирающиеся за пределы тела, не обязаны быть неодушевлёнными изделиями: они сами (будучи расширенными!) могут быть построены из живой ткани. Другая идея состоит в том, что везде, где имеет место совместное генетическое влияние на расширенный фенотип, это влияние будет в большей степени противоборством, чем сотрудничеством. Отношения, которые мы сейчас будем рассматривать – это отношения паразитов и их хозяев. Я покажу, что имеет логический смысл рассматривать гены паразита, как детерминирующие определённые элементы фенотипа хозяина, жизненно важные для самого паразита. Соответствующие изменения в морфологии и поведении хозяина включаются в расширенный фенотип паразита, поскольку контролируются его генами.
Личинка ручейника перемещается, находясь внутри построенного ею каменного домика. Поэтому представляется логичным рассматривать домик как внешнюю стену носителя генов, кожух машины выживания. Ещё легче расценить раковину улитки как часть фенотипической экспрессии её генов; пусть раковина – неорганический и «мёртвый» предмет, но химическое вещество для её постройки было впрямую выделено клетками улитки. Вариации – скажем в толщине стенок раковины, считались бы генетическими, если бы гены в клетках улитки воздействовали на толщину раковины. Иначе они считались бы «средовыми». Однако есть сообщения, что улитки, зараженные печёночными сосальщиками (трематодами), имеют более толстые раковины, чем незараженные (Cheng 1973). С точки зрения генетики самой улитки, этот аспект вариации раковины находится под «средовым» влиянием, ибо трематода – часть окружающей среды улитки; но с точки зрения генетики трематоды эта вариация вполне находится под генетическим контролем, и может быть такой адаптацией трематоды. Считается также возможным, что утолщенная раковина является патологической реакцией улитки, тупым побочным продуктом инфекции. Но давайте исследуем возможность того, что это есть адаптация трематоды, потому что эта идея интересна в свете нашего дальнейшего обсуждения.
Если мы рассматриваем вариации стенок раковины улитки как частично фенотипическую экспрессию её генов, то мы можем выяснить какую-то оптимальную толщину стенки. Отбор возможно отбракует те гены улитки, которые делают раковины как слишком толстыми, так и слишком тонкими. Тонкие раковины обеспечивают неадекватную защиту. «Гены слишком тонких» раковин подвергают опасности их копии в зародышевой линии, что не одобряется естественным отбором. Слишком толстые раковины, возможно лучше защищают их обладателей (и находящиеся в них гены зародышевой линии «дополнительной толщины»), но дополнительные издержки изготовления толстой раковины умаляют успех улитки в чём-то другом. Ресурсы, расходуемые на создание сверхтолстых раковин и на перемещение дополнительного веса, могли бы с большей пользой вложены в создание, скажем, больших гонад. Поэтому (продолжая этот гипотетический пример), гены сверхтолстых раковин будут вызывать в их телах некоторые нежелательные компенсации, вроде относительно маленьких гонад, что не позволит им столь же эффективно передаваться в следующее поколение. Если даже обмен между размером гонад и толщиной раковины на деле не имеет места, то наверняка имеются ограничения типа аналогичного обмена в чём-то другом, поэтому компромисс будет достигнут на какой-то средней толщине. Гены, делающие раковину улитки или слишком толстой, или слишком тонкой, не будут процветать в генофонде улитки.
Но всё это рассуждение исходит из предположения, что над вариациями толщины раковины властны единственно лишь гены улитки. Но что если некоторые из факторов, которые по определению являются средовыми с точки зрения улитки, оказываются генетическими с какой-то другой точки зрения, скажем – с точки зрения трематоды? Допустим, вышесказанное предположение верно – какие-то гены трематоды способны, влияя на физиологию улитки, определять толщину раковины. Если толщина раковины влияет на успех репликации таких генов трематоды, то естественный отбор непременно повысит частоты этих генов относительно их аллелей в генофонде трематоды. Тогда вариации толщины раковины улитки можно будет расценить, по крайней мере отчасти, как потенциальную адаптацию во благо генов трематоды.