Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Торн Кип (читать книги бесплатно txt) 📗
Другие, с кем я консультировался, также с энтузиазмом отозвались о Дривере. Как и Брагинский, он был в высшей степени креативен, изобретателен и осторожен, т. е. обладал многими качествами, необходимыми для успеха проекта. Руководство факультета и Калтеха собрало о нем и о других возможных руководителях всю возможную информацию, выбрало Дривера и пригласило его на факультет, чтобы инициировать проект. Как и Брагинский, Дривер колебался, но, в конце концов, сказал «да». Начало было положено.
Предлагая проект, я предполагал, что, так же как Вебер и Брагинский, Калтех сосредоточится на строительстве твердотельных детекторов. К счастью (оглядываясь назад), Дривер настоял на радикально другом направлении. В Глазго он в течение пяти лет работал над твердотельными детекторами и мог поэтому ясно оценивать их ограничения. Он считал, что гораздо более обещающими были интерферометрические гравитационно-волновые детекторы (для краткости интерферометры, хотя они совершенно отличаются от радиоинтерферометров, описанных в главе 9).
Использовать для детектирования гравитационных волн интерферометры в простейшей форме предложили в 1962 г. два русских друга Брагинского (Михаил Герценштейн и Владислав Пустовойт) и независимо в 1964 г. Джозеф Вебер. В 1969 г. Райнер Вайс, не знавший об этих ранних предложениях, разработал более совершенную схему интерферометрического детектора и в 1970 г. начал вместе со своей группой в Массачусетсском технологическом институте (MIT) разрабатывать и строить такой детектор. Такой же проект начал в Малибу, в Калифорнии, Роберт Форвард с коллегами из Исследовательской лаборатории Хьюза. Детектор Форварда был первым заработавшим. К концу 1970-х интерферометрические детекторы стали серьезной альтернативой твердотельным детекторам. Дривер добавил к их конструкции свои собственные хитроумные разработки.
* * *
На рис. 10.6 показана главная идея интерферометрического гравитационно-волнового детектора. К потолку на краях и в углу L-образного интерферометра подвешены на струнах три массы (рис 10.6а). Когда в лабораторию сверху или снизу приходит первый максимум гравитационной волны, его приливные волны должны раздвинуть массы в одном плече буквы «I» и одновременно сдвинуть их вдоль другого плеча. В результате этого длина первого плеча L1, (т. е. расстояние между двумя его массами) увеличится, а длина второго плеча L2 уменьшится. Следя за изменением разности L1—L2 можно искать гравитационные волны.
Слежение за величиной L1—L2 производится интерферометрическим образом (рис. 10.65 и Врезка 10.3). Лазерный луч светит на расщепитель пучка, который закреплен на угловой массе. Расщепитель половину луча отражает, а половину пропускает, расщепляя, таким образом, луч на два. Два луча направляются по двум плечам к крайним массам, отражаются от находящихся на них зеркал и затем возвращаются на расщепитель пучка. Делитель наполовину отражает и наполовину пропускает каждый из лучей, так что часть одного луча соединяется с частью другого луча и светит в сторону лазера, а другие части лучей, соединившись, падают на фотодетектор.
10.6. Лазерный интерферометрический гравитационно-волновой детектор. Этот инструмент очень похож на тот, который использовали Майкельсон и Морли в 1887 г. для поиска движения Земли относительно эфира (глава 1). Детальное описание см. в тексте
Если гравитационных волн нет, вклады двух плечей интерферируют таким образом (Врезка 10.3), что весь свет из интерферометра возвращается по направлению к лазеру, а на фотодетектор не попадает ничего. Если гравитационная волна изменит немного величину L1—L2, то два луча в двух плечах будут путешествовать на немного изменившиеся расстояния и будут интерферировать немного по-другому — крошечная часть их общего света теперь пойдет к фотодетектору. Следя за количеством света, приходящего на фотодетектор, можно следить за изменением разницы между L1и L2 и, таким образом, регистрировать гравитационные волны.
* * *
Интересно сравнить твердотельный детектор и интерферометр. Твердотельный детектор использует для слежения за приливными силами гравитационных волн колебания отдельного твердотельного цилиндра. Интерферометрический детектор использует для слежения за приливными силами относительные движения масс, подвешенных на струнах.
Врезка 10.3
Интерферометры и интерферометрия
Если в одной и той же области пространства распространяются две или больше волны, они «линейно» (Врезка 10.1) накладываются друг на друга, т. е. они попросту складываются. Например, следующие волны, показанные пунктирной и штриховой линиями, накладываются друг на друга, образуя волну, показанную сплошной линией.
Обратите внимание на места, подобные обозначенному буквой А, где провал одной (пунктирной) накладывается на гребень другой (штриховой) волны, по крайней мере частично, и образуют исчезающее малую суммарную волну (сплошная линия), а также на места, где, как в В, складываются два провала и волны усиливают друг друга. Говорят, что в первом случае имеет место деструктивная интерференция, а во втором — конструктивная. Такие наложения с интерференцией возможны для любых типов волн: морских, радио, световых, гравитационных, и такая интерференция играет ключевую роль в работе радиоинтерферометров (глава 9) и интерферометрических детекторов гравитационных волн.
В интерферометрическом детекторе на рис. 10.6б расщепитель луча накладывает половину луча из одного плеча на половину луча из другого плеча и направляет их к лазеру, а также складывает другие половины лучей и посылает их на фотодетектор. Если никакая гравитационная волна или другая сила не двигала массы и зеркала на них, то световые волны будут иметь вид, как на следующих рисунках, где штриховой линией показана волна из первого плеча, пунктирной — из другого, а сплошная линия изображает суммарную полную волну.
Направляемые к фотодетектору волны интерферируют деструктивно, поэтому полная суммарная волна исчезает, что означает, что детектор вообще не видит никакого света. Если гравитационная волна или какая-либо другая сила немного удлиняет одно плечо и укорачивает другое, то волны из одного плеча приходят на расщепитель луча с небольшой задержкой по отношению к волнам из другого плеча, и наложение имеет следующий вид:
Деструктивная интерференция в направлении фотодетектора теперь уже не идеальная, и фотодетектор получает немного света. Количество света, которое он получает, пропорционально разнице длин L1—L2 которая, в свою очередь, пропорциональна гравитационно-волновому сигналу.
Твердотельный детектор использует для слежения за колебаниями, вызванными волнами, электрический датчик (например, сжимаемый болванкой пьезокристалл). Интерферометрический детектор для слежения за вызванным волной движением своих масс использует интерференцию световых волн.
Болванка откликается в унисон только на гравитационные волны в узком частотном диапазоне, и поэтому для декодирования симфонии волн требуется ксилофон из многих болванок. Массы интерферометра болтаются свободно и откликаются на волны всех частот, больших чем примерно одно колебание в секунду [104], и поэтому интерферометр имеет широкую полосу: чтобы расшифровать всю симфонию достаточно трехчетырех детекторов.
104
Отклику на частотах более низких, чем 1 колебание в секунду, мешают струны, на которых подвешены массы. Они не позволяют массам свободно двигаться в ответ на такие низкочастотные волны.