Mybrary.info
mybrary.info » Книги » Научно-образовательная » Астрономия и космос » Астероидно-кометная опасность: вчера, сегодня, завтра - Шустов Борис (читать книги онлайн полностью TXT) 📗

Астероидно-кометная опасность: вчера, сегодня, завтра - Шустов Борис (читать книги онлайн полностью TXT) 📗

Тут можно читать бесплатно Астероидно-кометная опасность: вчера, сегодня, завтра - Шустов Борис (читать книги онлайн полностью TXT) 📗. Жанр: Астрономия и космос / Физика / Научпоп. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Эти же оценки вероятности столкновений приводят к вычислению отношения числа ударов по Земле и Луне тел одного размера на единицу площади поверхности. Это отношение (иногда называемое болидным отношением, Rb) составляет 1,6–1,8. Как видно, в дополнение к 13-кратному отношению площадей поверхности (6370/1738)2 Земля притягивает примерно в 1,7 раза больше тел. В сумме получается, что на один удар по Луне приходится около 20 ударов по Земле (для тел одного и того же размера). Но размеры кратеров, образуемых на Луне, будут несколько больше, чем на Земле, из-за меньшей силы тяжести.

Для представления основных закономерностей подобия при образовании ударных кратеров можно представить простую зависимость отношения диаметра кратера к диаметру ударника для лунных условий при средней скорости удара 20 км/с (рис. 9.5).

Астероидно-кометная опасность: вчера, сегодня, завтра - i_195.png

Рис. 9.4. Частота скоростей ударов наблюдаемых малых тел по Луне и Земле. По вертикальной оси отложены доли ударов в указанных на горизонтальной оси интервалах скоростей шириной 1 км/с (полное число ударов равно 1)

С точки зрения свойств материала мишени различаются два основных случая — пористая мишень (типа сухого песка или лунного реголита) и мишень из сплошной (малопористой) горной породы. Для пористой породы при диаметре кратера 300 м ударник должен быть в 30 раз меньше диаметра кратера — примерно 10 м. При падении на поверхность малопористых пород относительный размер кратера будет больше (из-за отсутствия потерь на нагрев динамически сжимаемой пористой среды) — примерно в 4/3 раза. Но зато малопористые породы имеют большую прочность, что приводит к пересечению кривых для малопористых и пористых пород в диапазоне диаметров кратеров около 1 м. При диаметре кратеров 100 м и более размеры кратера ограничиваются не столько прочностью пород, сколько затратами энергии на подъем выбрасываемых пород в поле тяжести. Такие кратеры называются «гравитационными». При диаметре кратера порядка 100 км для его образования требуется ударник всего в 10 раз меньший диаметра кратера. При этом возникает дополнительное новое явление — гравитационный коллапс кратеров, приводящий к образованию центральных одиночных и кольцевых горок, причем происходит уширение кратера за счет оползания его бортов.

Астероидно-кометная опасность: вчера, сегодня, завтра - i_196.png

Рис. 9.5. Зависимость отношения диаметра лунного ударного кратера к диаметру каменного астероида D/DP от диаметра кратера D при скорости удара 18 км/с. Граничный диаметр кратеров Dsg (strength-to-gravity) отмечает диапазон перехода от доминирования прочности к доминированию силы тяжести в определении конечного размера кратера. Граничный диаметр Dsc (simple-to-complex) отмечает переход от простых чашеобразных кратеров к сложным кратерам с центральной горкой (подробнее см. [Ivanov and Hartmann, 2007])

В земных условиях вся эта картина сдвигается в сторону меньших диаметров из-за большей силы тяжести на Земле. Для кратеров диаметром & 10 км численное моделирование процесса кратерообразования в сочетании с данными геолого-геофизических исследований позволяет дать простую приближенную оценку связи параметров ударника и диаметра возникающего при ударе кратера [Ivanov and Hartmann, 2007]:

D ≅ 4(DP v0,58)0,91, (9.6)

где диаметр кратера D и диаметр каменного астероида DP выражены в км, а скорость удара v — в км/с. Как ни странно, такая простая формула вполне прилично выполняется для кратеров диаметром от ∼ 5 до 200 км. Для кратеров меньшего размера большую роль играет строение и свойства массива горных пород в точке удара.

Используя все вышеперечисленные модели, можно пересчитать лунный темп кратерообразования к земным условиям и оценить среднюю частоту образования земных метеоритных кратеров, основываясь только на лунной кратерной хронологии, показанной на рис. 9.2. Для простоты мы не будем делать поправок на влияние атмосферы (что представляет особую задачу — см., например, [Bland and Artemieva, 2003; Bland and Artemieva, 2006]). Наши оценки — это оценки числа столкновений малых тел с Землей, энергия которых выражается в виде диаметра эквивалентного кратера, который мог бы образоваться на поверхности гипотетической безатмоферной Земли. На рис. 9.6 показаны лунные изохроны — кумулятивные оценки числа ударов по всей поверхности Земли, энергия которых выражена в диаметре эквивалентного кратера без учета атмосферы. Для кратеров размером более нескольких километров эти оценки соответствуют реальным кратерам. Такое построение удобно использовать для оценок частоты ударов по Земле.

Астероидно-кометная опасность: вчера, сегодня, завтра - i_197.png

Рис. 9.6. Кумулятивное число ударных кратеров на всей поверхности Земли, образовавшихся за данный промежуток времени, оцененное путем пересчета лунной кратерной хронологии. Черными точками показаны независимые оценки, сделанные методом «ближайшего соседа» по сохранившимся ударным кратерам на суше [Hughes, 2000], пересчитанные к полной площади поверхности Земли

Проверку модели переноса лунной кратерной хронологии на Землю сделать непросто, так как в земных условиях трудно оценить площадь поверхности, на которую нужно нормировать число обнаруженных ударных кратеров [Grieve, 1984; Grieve and Shoemaker, 1994]. Однако в работе [Hughes, 2000] была сделана оценка числа кратеров на единицу площади методом «ближайшего соседа», не требующая сложного анализа геологической ситуации. Для представительной выборки кратеров моложе 125 млн лет автор построил кумулятивное распределение по размерам, показанное на рис. 9.6 пунктирной линией. Можно только удивляться очень хорошему соответствию этих данных модельным результатам переноса лунной кратерной хронологии. Тем не менее, такое совпадение (наряду с обсуждавшимся выше совпадением современного потока болидов и темпа образования малых кратеров на Луне в последние 100 млн лет) позволяет отнестись к полученным результатам с определенным доверием, однако с продолжением совершенствования методик оценки астероидной опасности в будущем.

Астероидно-кометная опасность: вчера, сегодня, завтра - i_198.png

Рис. 9.7. Сравнение вероятностей столкновения с Землей астероидов, сделанное по хронологии лунных ударных кратеров в сравнении с данными по болидам [Brown et al., 2002; Halliday et al., 1996] и по моделированию астрономических наблюдений малых тел [Rabinowitz et al., 2000; Stuart, 2001; Stuart and Binzel, 2004]. Для сравнения показаны оценки распределения по размерам астероидов в Главном поясе по данным [Ivezic et al., 2001] (А) и [Jedicke et al., 2002] (B). Кривая B* представляет собой кривую B, масштабируемую к количеству околоземных астероидов

Показанные на рис. 9.6 распределения кратеров по размеру можно перевести в оценки частоты падения на Землю тел различного диаметра (или непосредственно в кинетическую энергию ударных событий). На рис. 9.7 показаны разнородные данные, полученные в различных диапазонах размеров малых тел различными методами — по наблюдению болидов, по подсчету лунных кратеров, по моделированию астрономических наблюдений малых тел вблизи Земли и в Главном поясе астероидов. Имея каждый в отдельности большую степень неопределенности, все вместе они позволяют построить общую картину частоты падения тел (или, что то же, распределения тел по размерам), бомбардирующих Землю в текущую эпоху. Вырисовывается довольно сложная картина наложения нескольких простых степенных законов, каждый из которых, однако, не может быть экстраполирован за пределы своего диапазона.

Перейти на страницу:

Шустов Борис читать все книги автора по порядку

Шустов Борис - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Астероидно-кометная опасность: вчера, сегодня, завтра отзывы

Отзывы читателей о книге Астероидно-кометная опасность: вчера, сегодня, завтра, автор: Шустов Борис. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*