Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Торн Кип (читать книги бесплатно txt) 📗
Для звезды (правая часть рис. 4.2) аналогом ваших рук является вес внешней оболочки звездного вещества, а аналогом воздуха в мяче — вещество внутри оболочки. Граница между внешней оболочкой и внутренним шаром может быть выбрана совершенно произвольно — на глубине одного метра, километра, тысячи километров от поверхности звезды… Где бы ни была выбрана граница, должно выполняться требование: вес внешней оболочки, сжимающий внутреннее ядро (гравитационное сжатие внешней оболочки), в точности скомпенсирован давлением молекул внутреннего шара, сталкивающимися с этой оболочкой. Этот баланс, с необходимостью возникающий в каждом месте внутри звезды, определяет структуру звезды, т. е. детали того, как давление, гравитация и плотность меняются от поверхности звезды вглубь, к ее центру.
В книге Эддингтона также обсуждался не дающий покоя физикам парадокс, связанный с представлениями того времени о структуре белых карликов. Эддингтон полагал (так же как и все астрономы в 1925 г.), что давление вещества белых карликов, так же как и в вашем мяче, должно быть обусловлено его теплом. Тепло заставляет атомы вещества двигаться внутри звезды с высокими скоростями, сталкиваясь друг с другом и бомбардируя поверхность границы между внешней оболочкой звезды и его внутренним ядром. При «макроскопическом» рассмотрении, слишком грубом, чтобы различать отдельные атомы, все, что мы можем измерить, это полную силу ударов атомов, которые сталкиваются, скажем, с одним квадратным сантиметром поверхности. Эта полная сила и есть давление внутри звезды.
Когда звезда охлаждается, испуская излучение во внешнее пространство, ее атомы начинают двигаться медленнее, давление ослабевает, и вес внешней оболочки сжимает внутреннее ядро до меньшего объема. Это сжатие вновь нагревает звезду, увеличивая внутреннее давление, пока не будет достигнут новый баланс сжатие-давление, но уже при меньших размерах, чем прежде. Таким образом, поскольку Сириус В продолжает постепенно охлаждаться, излучая тепло в межзвездное пространство, он должен мало-помалу сокращаться в размерах.
Когда закончится это сжатие? Какова окончательная судьба Сириуса В? Самый очевидный (но неверный) ответ, что звезда будет уменьшаться до тех пор, пока не станет столь малой, что превратится в черную дыру, был неприемлем для Эддингтона. Он отказывался даже рассматривать его. Единственное разумное решение, которое он еще мог представить, состояло в том, что звезда должна в пределе охладиться и затем будет поддерживаться уже не тепловым давлением (т. е. давлением, обусловленным теплом), а другим известным в 1925 г. типом давления, а именно, тем, которое обнаруживается в твердых телах, например, в обычном камне, обусловленным отталкиванием электронов близко расположенных атомов. Но как (неправильно) считал Эддингтон, такое «каменное давление» возможно лишь в том случае, если плотность звезды близка к плотности камня — несколько грамм на кубический сантиметр (в 10 тыс. раз меньше, чем плотность Сириуса В).
Такая последовательность аргументов приводила к парадоксу Эддингтона. Чтобы расшириться до плотности камня и тем самым быть в состоянии удерживать себя после охлаждения, Сириусу В требуется совершить колоссальную работу против сил собственной гравитации, а физики не знали адекватного такой работе источника энергии внутри звезды. «Представьте тело, постоянно теряющее тепло, но тем не менее теряющее его недостаточно, чтобы охладиться», — писал Эддингтон. «Это любопытная проблема, и можно было бы сделать множество причудливых предположений касательно того, что в действительности происходит. Мы же оставим в стороне эту трудность, поскольку она не обязательно является неизбежной».
Чандрасекар нашел разрешение этого парадокса 1925 г. в статье Р.Х.Фоулера 1926 г. «О плотном веществе». Решение заключалось в недостаточности законов физики, использованных Эддингтоном. Эти законы необходимо было заменить новыми законами квантовой теории, которые описывали давление внутри Сириуса В и других белых карликов не как обусловленное теплом, а как новый, квантовомеханический феномен: вырожденное движение электронов, также называемое электронным вырождением [62].
Вырождение электронов напоминает человеческую клаустрофобию. Когда вещество сжато до плотности, в 10 тыс. раз превышающей плотность камня, облако электронов, окружающее каждое атомное ядро, занимает в 10 тыс. раз более тесную ячейку. Поэтому каждый электрон оказывается заключенным в «клетку», имеющую объем, в 10 тыс. раз меньший того, в котором ему раньше позволялось двигаться. Имея в распоряжении столь малый объем, электрон, как человек больной клаустрофобией, начинает непроизвольно метаться. Он носится по своей маленькой клетке с очень высокой скоростью, с большой силой ударяясь об электроны в прилегающих ячейках. Это вырожденное движение, как его называют физики, не может быть остановлено охлаждением вещества. Ничто не может его остановить; законы квантовой механики вынуждают электрон двигаться даже при температуре вещества равной абсолютному нулю.
Это вырожденное движение есть следствие особенности вещества, о которой и не думали ньютоновские физики, особенности, называемой корпускулярно-волновым дуализмом. Каждая частица (корпускула), в соответствии с квантовой механикой, при определенных условиях ведет себя как волна, а волна любого типа, при некоторых специальных условиях, — как частица. Поэтому волны и частицы в действительности являются одной и той же сущностью, которая иногда ведет себя как частица, а иногда — как волна.
* * *
Электронное вырождение проще всего понять в рамках дуализма волна-частица. Когда вещество сжато до высокой плотности, и каждый электрон среды заключен в чрезвычайно малом пространстве, сдавленный электронами соседних ячеек, он начинает вести себя во многом как волна. Длина электронной волны (расстояние между ее гребнями) не может быть больше, чем размер ячейки; если бы она была больше, волна выходила бы за пределы этой ячейки. Далее, частицы, имеющие очень малую длину волны, обязательно будут обладать высокой энергией. (Типичный пример — частица, связанная с электромагнитной волной, — фотон. Фотон рентгеновских лучей имеет гораздо более короткую длину волны, чем у видимого света и, как следствие, фотоны рентгеновских лучей гораздо более энергичны, чем фотоны видимого света. Высокая энергия рентгеновских лучей позволяет им проникать через мягкие ткани и кости человека.)
В случае электронов внутри очень плотного вещества короткая длина волны и, соответственно, высокая энергия приводят к их быстрому движению; это означает, что электрон должен двигаться в своей ячейке как странный сверхбыстрый мутант: наполовину — волна, наполовину — частица. Физики говорят, что электрон «вырожден», и называют давление, вызываемое этим беспорядочным высокоскоростным движением, «давлением вырожденных электронов». Избавиться от этого давления невозможно; оно является неизбежным следствием заключения электрона в малом объеме. Более того, чем больше плотность вещества, тем меньше ячейка, тем меньше длина волны электрона, тем выше его энергия, быстрее движение и, следовательно, больше давление вырождения. В обычном веществе с обычной плотностью давление вырождения настолько мало, что им можно пренебречь, но при огромных плотностях белых карликов оно должно быть чрезвычайно большим.
* * *
Когда Эддингтон писал свою книгу, электронное вырождение еще не было предсказано, и поэтому не было никакой возможности правильно рассчитать, как камень или любой другой материал ответит на сжатие до ультравысоких плотностей Сириуса В. С появлением законов электронного вырождения, подобные вычисления стали возможны, и они действительно были предложены и осуществлены Фоулером в статье 1926 г.
Врезка 4.1
Краткая история корпускулярно-волнового дуализма
Уже во время Исаака Ньютона (конец 1600-х) физики столкнулись с вопросом: состоит ли свет из частиц или волн. Ньютон, хотя и колебался, все же склонялся к частицам и назвал их корпускулами, в то время как Христиан Гюйгенс приводил доводы в пользу волн. Представление о частицах света Ньютона возобладало до начала 1800-х, когда открытие, что свет может сам с собой интерферировать (глава 10), убедило физиков в правильности волновых воззрений Гюйгенса. В середине 1800-х Джеймс Кларк Максвелл поставил волновое описание волны на твердую опору своих объединяющих законов электричества и магнетизма, и физики решили, что проблема, наконец, разрешилась. Однако это было до появления квантовой механики.
В 1890-х Макс Планк заметил в форме спектра излучения, испускаемого очень горячими объектами, намеки на то, что физики что-то упустили в понимании природы света. В 1905 г. Эйнштейн показал то, чего не доставало: свет иногда ведет себя как волна, а иногда как частица (теперь называемая фотоном). Эйнштейн объяснил, что он ведет себя как волна, когда интерферирует сам с собой, но как частица в фотоэлектрическом эффекте, когда слабый пучок света падает на поверхность металла. Луч выбивает электроны из металла по одному, именно так, как если бы с электронами сталкивались, выбивая их с поверхности металла, отдельные частицы света (отдельные фотоны). По энергии выбиваемых электронов Эйнштейн определил, что энергия фотона всегда обратно пропорциональна длине волны света. Таким образом, свойства фотона переплетены с волновыми свойствами: длина волны однозначно связана с энергией фотона. Открытие Эйнштейном дуализма волновых и корпускулярных свойств света и первые квантовомеханические законы физики, которые он начал строить вокруг этого открытия, обеспечили ему в 1922 г. Нобелевскую премию 1921 г.
Хотя Эйнштейн сформулировал общую теорию относительности почти единолично, он был только одним среди многих тех, кто внес свой вклад в законы квантовой механики — законы «царства малого».
Когда Эйнштейн обнаружил дуализм волн/частиц света, он еще не понимал того, что электрон или протон тоже могут вести себя иногда как частицы, а иногда как волны. Об этом никто не догадывался до середины 1920-х, когда Луи де Бройль сформулировал такую гипотезу, а затем Эрвин Шрединдгер использовал ее как основу для полного набора законов квантовой механики, законов, в которых электрон является волной вероятности. Вероятности чего? Вероятности локализации частицы. Эти «новые» законы квантовой механики (которые оказались чрезвычайно успешными в объяснении поведения электронов, протонов, атомов и молекул) не будут нас особенно волновать в этой книге. Однако время от времени некоторые из их особенностей будут все же для нас важны. Такой важной особенностью для этой главы является электронное вырождение.
62
Слово «вырожденный» не означает «моральное вырождение» («низкий уровень морали»), а имеет смысл «достижение электроном наинизшего возможного уровня энергии».