Изложение системы мира - Лаплас Пьер Симон (бесплатные онлайн книги читаем полные .TXT) 📗
Наконец, к высотам барометра надо придать ещё небольшую поправку, зависящую от разности температур ртути в барометре на обеих станциях. Чтобы хорошо знать эту разность, в оправу барометра вставляют небольшой ртутный термометр таким образом, чтобы ртуть в этих двух приборах была всегда почти одинаковой температуры. На более холодной станции ртуть плотнее, и поэтому в барометре столбик ртути уменьшен. Чтобы его привести к длине, которую он имел бы, если бы его температура равнялась температуре на более тёплой станции, его надо увеличить на его 5550-ю часть, умноженную на число градусов в разности температур ртути на обеих станциях.
Итак, вот правило для барометрического определения высот, которое мне кажется одновременно и наиболее точным, и самым простым. Прежде всего исправляется, как было указано, отсчёт высоты ртути в барометре более холодной станции. Затем к коэффициенту 18 393 м прибавляется произведение 26.164 м на косинус удвоенной широты. Исправленный таким образом коэффициент умножается на табличный логарифм отношения наибольшей исправленной высоты барометра к наименьшей. Наконец, это произведение умножается на удвоенную сумму градусов термометров, указывающих температуру воздуха на каждой станции, и полученное произведение, разделённое на тысячу, прибавляется к предыдущему. Полученная сумма с большим приближением даёт превышение верхней станции над нижней, особенно если отсчёты барометров сделаны в наиболее благоприятное время суток, которым представляется полдень.16
В небольших объёмах воздух невидим. Но лучи света, отражённые всеми слоями атмосферы, вызывают ощутимый эффект видимости воздуха, окрашивая его в голубой цвет, который придаёт голубоватый оттенок отдалённым предметам и образует небесную лазурь. Вот почему мы видим туман, в который мы погружены, только на более или менее значительном расстоянии. Этот голубой свод, к которому небесные светила нам кажутся прикреплёнными, стало быть, очень близок к нам. Это не что иное как земная атмосфера, и небесные тела расположены за её пределами на огромных расстояниях. Солнечные лучи, которые молекулами воздуха в изобилии отражаются к нам перед восходом и после заката Солнца, образуют рассвет и вечерние сумерки, распространяясь на угловое расстояние, превышающее 20g [18°], от этого светила. Это доказывает, что самые высокие молекулы атмосферы находятся на высоте, по меньшей мере, 60 000 м.
Если бы глаз мог различать и относить на их истинные места точки внешней поверхности атмосферы, мы видели бы небо как шаровой сегмент, образованный частью этой поверхности, отрезанной плоскостью, касательной к Земле. А так как высота атмосферы очень мала по сравнению с земным радиусом, небо представлялось бы нам в виде пониженного свода. Хотя мы не можем разглядеть пределы атмосферы, но так как лучи, которые она нам посылает, на горизонте приходят из большей глубины чем в зените, мы должны считать, что она протяженнее в горизонтальном направлении. К этому присоединяется ещё то, что наличие предметов между нами и горизонтом увеличивает расстояние до той части неба, которая находится далее линии горизонта. Поэтому нам небо должно казаться пониженным, подобно шаровому сегменту. Небесное светило, находящееся на высоте около 26g [23°], кажется делящим на две равные части длину кривой, образуемой сечением поверхности неба вертикальной плоскостью от горизонта до зенита. Отсюда следует, что, если эта кривая есть дуга окружности, горизонтальный радиус видимого небесного свода относится к его вертикальному радиусу приблизительно как 31/4 к 1. Но это отношение изменяется вместе с причинами этой иллюзии. Видимые размеры Солнца и Луны, пропорциональные углам, под которыми мы их видим, и кажущимся расстояниям точек неба, к которым мы их относим, на горизонте кажутся нам большими, чем в зените, хотя на горизонте они видны под меньшими углами.17
Световые лучи в атмосфере проходят не по прямым направлениям. Они непрерывно отклоняются к Земле. Наблюдатель, видящий предметы только в направлении касательной к кривой, которую они описывают, усматривает их выше, чем они находятся на самом деле, и небесные светила видны на горизонте тогда, как они ещё находятся под ним. Отклоняя лучи Солнца, атмосфера позволяет нам дольше наслаждаться его присутствием и удлиняет день, который делается ещё длиннее благодаря зорям. Астрономам было очень важно знать законы и величину рефракции света в нашей атмосфере, чтобы получать истинные положения небесных тел. Но прежде чем представить результаты их изысканий по этому предмету, я в немногих словах изложу основные свойства света.
Проходя из одной прозрачной среды в другую, световой луч приближается или отдаляется от перпендикуляра к разделяющей их поверхности таким образом, что синусы двух углов, образованных направлениями луча с этим перпендикуляром, одного до входа в новую среду, а другого — после, находятся в постоянном отношении, каковы бы ни были эти углы. Но свет, преломляясь подобным образом, порождает замечательное явление, позволившее нам познать его природу. Луч солнечного света, полученный в тёмной комнате, после прохождения через прозрачную призму образует продолговатое изображение, окрашенное в различные цвета. Этот луч представляет собой пучок бесконечного числа лучей разных цветов, которые призма разделяет в силу их различной преломляемости. Наиболее преломляемый луч — фиолетовый, затем синий, голубой, зелёный, жёлтый, оранжевый и красный. Но хотя мы указываем здесь только семь цветов лучей, их существует целая бесконечность, незаметно переходящих один в другой по цвету и преломляемости. Все эти лучи, собранные линзой, снова дают белый солнечный свет, который, таким образом, представляет собой смесь всех простых, или однородных, цветов, взятых в определённых пропорциях.
Если луч однородного цвета хорошо отделен от других лучей, он уже не изменяет ни своей преломляемости, ни цвета, каковы бы ни были преломления и отражения, испытываемые им. Значит, его цвет не является результатом изменения света той средой, через которую он проходит, а связан с его природой. Однако тождество цвета ещё не означает тождества света. Смешивая вместе несколько различно окрашенных лучей Солнца, разложенных призмой, можно образовать цвет, подобный одному из простых цветов. Так смешение однородных жёлтого и красного цветов производит оранжевый, подобный однородному оранжевому. Однако преломление лучей такой смеси при новом прохождении через призму снова их разделяет на составляющие цвета, тогда как однородные оранжевые лучи остаются неизменными.
Лучи света, встречаясь с поверхностью зеркала, отражаются, образуя с перпендикуляром к его поверхности углы отражения, равные углам падения.
Преломление и отражение солнечных лучей в каплях дождя порождают радугу, объяснение которой, основанное на строгом расчёте и точно удовлетворяющее во всех деталях этому любопытному явлению, есть один из выдающихся результатов физики.
Большинство тел разлагает падающий на них свет: одна часть его поглощается, а другая отражается во всех направлениях, и тело кажется красным, синим, зелёным и т.д. в зависимости от цвета отражённых им лучей. Так, белый солнечный свет, разливаясь по всей природе, разлагается и отражает к нашим глазам бесконечное разнообразие цветов.
После этого короткого отступления о природе света я возвращаюсь к астрономической рефракции. Рефракция света в воздухе почти независима от его температуры и пропорциональна его плотности. Переходя из пустоты в воздух с температурой тающего льда и под давлением, измеренным высотой ртути в барометре, равной 0.76 м, световой луч преломляется так, что синус угла преломления относится к синусу угла падения как единица к 1.0002943321. Поэтому чтобы определить путь луча в атмосфере, достаточно знать закон распределения плотности в её слоях. Но этот закон, зависящий от их температуры, очень сложен и изменяется в течение суток. Если положить, что температура атмосферы везде равна 0°, то, как было показано, плотность её слоёв убывает в геометрической прогрессии. Отсюда путём анализа можно найти, что при высоте ртути в барометре, равной 0.76 м, рефракция на горизонте будет равна 7391cc [2395"]. Она была бы равна 5630сс [1823"], если бы плотность слоёв уменьшалась в арифметической прогрессии и становилась равной нулю на поверхности атмосферы. Наблюдаемая горизонтальная рефракция, равная 6500сс [2106"], находится по середине между этими пределами. Таким образом, закон изменения плотности атмосферных слоёв с высотой близок к промежуточному между этими прогрессиями. Приняв гипотезу, учитывающую обе прогрессии, можно достигнуть хорошего представления сразу всех наблюдений барометра и термометра по мере поднятия в атмосфере, а также астрономической рефракции, не прибегая, как это делали некоторые физики, к гипотезе об особой жидкости, смешанной с атмосферным воздухом и преломляющей свет.