Очерки о Вселенной - Воронцов-Вельяминов Борис Александрович (книги бесплатно без TXT) 📗
Существенно, как это впервые еще 35 лет назад показали расчеты автора, что расширение большого числа планетарных туманностей является непосредственно наблюдаемым фактом рассеяния в пространстве газов, ранее входивших в состав ядер, т. е. звезд.
Из каких звезд и почему возникают планетарные туманности, пока совершенно не ясно. Попытки видеть в стадии, предшествующей планетарным туманностям, некоторые типы холодных переменных звезд, вспышки новых звезд или же выбрасывающие газ звезды Вольфа - Райе пока не убедительны. В двух последних случаях скорости выброса оболочек или постоянного истечения газа слишком велики, чтобы создать медленно расширяющуюся планетарную туманность. Но несомненно (по подсчету автора), что за срок существования Галактики планетарные туманности наполнили ее количеством газа, составляющим заметную долю от всех газов, наблюдаемых в Галактике сейчас. До сих пор «спорят» две гипотезы: возникают ли звезды из сгущения диффузной материи или, наоборот, они происходят из сверхплотного вещества. Между тем то, что диффузная материя хотя бы частично порождается звездами, уже стало общепризнанным фактом.
Межзвездный газ
Газ, всюду газ! Собранный в гигантские раскаленные шары, он образует бесчисленные звезды - в них сосредоточена главная масса вещества во Вселенной. Разреженный холодный газ, заполняющий огромные пространства в виде газовых туманностей, обволакивающий десятки звезд, газ, образующий атмосферы планет! И все это в безвоздушном пространстве. Но подлинно ли в безвоздушном?
Наши понятия о вакууме, о безвоздушном пространстве относительны. В электрической лампочке старого типа «нет воздуха», говорим мы, он оттуда выкачан. Сравнительно о комнатным воздухом там вакуум. Но физик с помощью своих лучших насосов может так выкачать воздух из какой-либо стеклянной трубки, что по сравнению с пространством в ней пространство внутри электрической лампы кишит мириадами молекул.
Газовые диффузные туманности с их плотностью порядка 10-19 г/см3 раскинулись в безвоздушном пространстве. Но и оно, как мы убеждаемся, не совершенно пусто, в нем тоже есть газ. Газ ничтожной плотности, но все же газ, и между любыми двумя звездами есть газовая среда, как бы разрежена она ни была.
Но какой это газ? Это, конечно, не земной воздух, хотя бы и разреженный. История изучения этого газа принесла много интересного и неожиданного.
В 1904 г., изучая спектрально-двойную звезду Дельту Ориона, Гартман для большей точности определения ее лучевой скорости измерял положение в спектре всех темных линий, которые в нем были видны. Ведь если звезда движется как целое по своей орбите около центра тяжести системы, то все линии ее спектра должны смещаться одинаково в том смысле, что в пределах ошибок измерения смещение любой линии спектра должно соответствовать одной и той же скорости приближения или удаления от нас. Мы уже знаем, что при таком периодическом орбитальном движении линии спектра периодически же изменяют свое смещение. В спектре Дельты Ориона все линии вели себя «как следует», кроме линий ионизованного кальция. Эти две линии почему-то не участвовали в общем периодическом колебании положения линий в спектре, а упрямо стояли на месте. Неслась ли звезда на нас, удалялась ли она от нас в данный момент - линиям кальция это было безразлично.
Рис. 173. Линии межзвездного кальция
Упрямые линии принадлежали атомам кальция, и Гартману ничего не оставалось, как заключить, что кальций почему-то не участвует в орбитальном движении звезды. Раз линии кальция видны как темные (в поглощении), то,,очевидно, свет звезды проходит через него, поглощается в нем, но этот элемент не находится в атмосфере звезды, вызывающей появление в спектре остальных линий поглощения. Атмосфера звезды движется вместе со звездой, кальций же с ней не движется. Быть может, наша двойная звезда погружена в обширное облако разреженного кальция, в котором она и движется, не увлекая его с собой?
Такого рода линии кальция назвали стационарными, т. е. неизменными, неподвижными. В дальнейшем в спектрах многих других спектрально-двойных звезд были открыты стационарные линии кальция, но лишь в тех случаях, когда звезды были раннего спектрального класса В.
Слайфер, однако, нашел более вероятным, что стационарные линии производятся не облаком кальция, в которое погружена звезда, а облаками кальция или его непрерывной массой, расположенной на всем пути луча света от звезды к нам. Другими словами, кальций не околозвездный, а межзвездный газ. Этот взгляд был подтвержден. Тогда вместо «стационарные линии» стали говорить «межзвездные линии».
Выяснилось это так. Когда стало известно, что температура атмосферы звезды определяет вид ее спектра, стало возможно теоретически определять интенсивности разных линий, создаваемых атмосферой звезды определенного химического состава и определенной температуры. Выяснилось, что такие горячие звезды, как звезды класса В, не содержат в своей атмосфере атомов ионизованного кальция - для них там слишком горячо. Весь кальций там уже дважды ионизован, и его линий в спектре быть не может. Значит, ионизованный кальций, производящий в спектре горячих звезд стационарные линии, должен быть далеко от звезды, там, где не так горячо и где он может существовать.
Затем обнаружилось, что вовсе не одни лишь спектрально-двойные звезды обнаруживают эти линии кальция, - он есть в спектрах большинства горячих одиночных звезд. Там его линии вообще нельзя назвать стационарными, потому что одинокая звезда не совершает орбитального движения. По отношению к нам она движется постоянно с одной и той же скоростью, поэтому все линии ее спектра смещены по принципу Доплера на величины, соответствующие одной и той же скорости. Однако оказалось, что у таких горячих звезд смещение линий ионизованного кальция соответствует совершенно другой скорости, чем та скорость, с которой движется сама звезда.
Если ионизованный кальций заполняет все межзвездное пространство, то его линии, смещенные, как мы видим, всегда особенным образом, должны присутствовать в спектрах звезд любого типа. К сожалению, более холодные звезды сами содержат в своей атмосфере ионизованный кальций, а потому и его линии в спектре. Эти линии широки и сильны и маскируют тонкие, слабые линии межзвездного кальция. В некоторых случаях все же удалось обнаружить эти тонкие «межзвездные» линии, наложенные на более широкие «звездные» линии спектра.
Решающим оказалось выполненное в Канаде Пласкеттом и Пирсом сопоставление интенсивности линий межзвездного кальция с расстоянием до звезд. Чем звезда дальше, тем интенсивнее ее линии межзвездного кальция. Но так и должно быть, если кальций заполняет всю межзвездную среду. Чем дальше от нас звезда, тем длиннее путь ее луча, прежде чем он дойдет до нас, и тем больше поглощающих атомов кальция он встретит на своем пути. Чем больше атомов кальция поглотит свет звезды, тем больше он ослабится и тем темнее и интенсивнее будет линия поглощения в спектре. С этим объяснением пришлось согласиться.
Мало того, теперь мы имеем возможность, установив из наблюдений связь между интенсивностью линий ионизованного кальция и известными расстояниями до звезд, определять по интенсивности этих линий расстояние до тех горячих звезд, для которых они еще не известны. Спасибо межзвездному кальцию! - должны сказать мы во многих случаях, так как часто у нас не бывает другого способа определить расстояние до какой-нибудь звезды.
Пласкетт и Пирс сумели также доказать, что межзвездный кальций участвует в том общем вращении, которым охвачены все звезды нашей звездной системы. Сопоставляя лучевые скорости звезд, вызванные этим вращением, с лучевой скоростью межзвездного кальция (по сдвигу его линий в спектрах тех же звезд), убедились, что последняя вдвое меньше, чем та лучевая скорость, которая следует для данной звезды по теории вращения Галактики. Но вдвое меньшую скорость относительно Солнца при вращении Галактики должна иметь точка, вдвое более близкая. Вывод отсюда один: межзвездный кальций участвует во вращении всей звездной системы, вместе со звездами и по тем же законам, так как центр тяжести того столба газа, который находится между любой звездой и нами, во всех случаях совпадает с его серединой. Это значит, что в пространстве между звездами кальций расположен довольно равномерно.