Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Торн Кип (читать книги бесплатно txt) 📗
Хокинг хорошо понимал, что предсказания относительно результатов экспериментов, производимых человеческими или иными существами, не зависят от выбора определения горизонта событий, абсолютного или видимого. Этот выбор не будет влиять на вывод о том, каково будет гравитационное излучение, рожденное при столкновении черных дыр (глава 10), или на интенсивность рентгеновского излучения, возникшего при падении горячего газа внутрь черной дыры через ее горизонт событий (глава 8). Однако от выбора определения сильно зависит то, насколько легко смогут физики-теоретики прогнозировать свойства и поведение черных дыр на основе эйнштейновских уравнений общей теории относительности. Выбранное определение станет ключевым моментом в парадигме, с помощью которой теоретики проводят свои исследования; оно будет влиять на их умственные картины, диаграммы, слова, которыми они будут пользоваться при общении друг с другом, и на моменты их озарений. Хокинг верил, что новое определение абсолютного горизонта событий с плавно растущей площадью будет больше подходить для этих целей, чем старое определение видимого горизонта, размер которого скачкообразно меняется.
* * *
Стивен Хокинг был не первым физиком, который думал об абсолютных горизонтах событий и который обнаружил возрастание их площади. До бессонной ноябрьской ночи Хокинга об этом уже размышлял Роджер Пенроуз в Оксфорде. По сути дела, идея Хокинга была основана на разработках Пенроуза (глава 13) и на недавней беседе с ним. Пенроуз, однако, не придал значения теореме возрастающей площади и поэтому не довел работу до конца. Почему он не оценил ее? Потому что у него не было столь ясного мысленного образа абсолютного горизонта событий. Мимо него прошло то, что Хокинг так ясно увидел в свою бессонную ночь: после столкновения черных дыр их слившийся абсолютный горизонт событий должен прийти в состояние покоя, в котором площадь его поверхности можно вычислить из стандартных уравнений для спокойных черных дыр.
Вернер Израэль из Университета Альберта в Канаде также вплотную приблизился к теореме возрастания площади еще до Хокинга. Но он так же не придал ей значения и не опубликовал ее. Более того, в отличие от Хокинга и Пенроуза Израэль был загипнотизирован старой концепцией видимого горизонта, так же как все мы, теоретики-релятивисты. Видимый горизонт событий сыграл центральную роль в удивительном открытии Пенроуза, сделанном им в 1964 г.: согласно законам Эйнштейна, каждая черная дыра должна иметь в центре сингулярность (глава 13). Тогда понятие видимого горизонта событий оказалось очень важным. Находясь под его впечатлением, все релятивисты не могли даже и подумать о том, чтобы заменить видимый горизонт, как определение поверхности черной дыры, абсолютным горизонтом событий. Мы обращали мало внимания на абсолютный горизонт еще и потому, что понятие о нем нарушает сложившиеся стереотипы о причинах и следствиях. Когда вещество падает внутрь черной дыры, абсолютный горизонт событий начинает расти («следствие») до того, как вещество ее достигает («причина»). Горизонт событий растет в ожидании того, что вещество будет вскоре захвачено и увеличит силу гравитационного притяжения черной дыры (Врезка 12.2). Этот кажущийся парадокс имеет простую причину. Само определение абсолютного горизонта событий зависит от того, что произойдет в будущем: смогут ли сигналы, в конце концов, уйти во внешнюю Вселенную. В философской терминологии это телеологическое определение (определение, опирающееся на «конечные причины»), что и делает эволюцию горизонта событий телеологической. Поскольку телеологическая точка зрения практически не используется в современной физике, рассмотрение абсолютного горизонта событий представлялось бессмысленным.
Врезка 12.2
Эволюция видимого и абсолютного горизонтов событий аккрецирующей черной дыры
Эта пространственно-временная диаграмма иллюстрирует скачкообразную эволюцию видимого горизонта и телеологическую эволюцию абсолютного горизонта событий. В некоторый начальный момент
времени (на горизонтальном участке внизу диаграммы) старая невращающаяся черная дыра окружена тонкой сферической оболочкой вещества.
Оболочка подобна поверхности воздушного шара, а черная дыра — как пещера в центре шара. Силы гравитации черной дыры действуют на оболочку (поверхность шара) и заставляют ее сжиматься до полного поглощения черной дырой (пещерой). В тот момент, когда сжимающаяся оболочка достигает критической поверхности черной дыры, внезапно появляется видимый горизонт событий (самая дальняя граница, за которую не могут выйти световые лучи, показанные на рисунке пунктиром). Абсолютный горизонт событий (граница между событиями, которые могут, и событиями, которые не могут посылать световые лучи во внешнюю Вселенную) начинает расширяться до того, как черная дыра поглощает оболочку. Он расширяется в ожидании поглощения оболочки, сразу после этого приходит в состояние покоя и оказывается в том же месте, что и внезапно появившийся видимый горизонт событий.
Хокинг оказался смелым мыслителем. Более других физиков он был готов исследовать новые радикальные направления, если он «чувствовал», что они правильные. В случае с абсолютным горизонтом событий он почувствовал правильность выбранного направления и, несмотря на его радикальный характер, он поверил в него. И эта вера сполна отплатила ему. Хокинг и Джеймс Хартл за несколько месяцев смогли вывести из законов общей теории относительности Эйнштейна систему элегантных уравнений, описывающих гладкое и непрерывное расширение абсолютного горизонта событий и изменений его формы в предвкушении поглощения падающего космического мусора или гравитационных волн или в предвкушении действия сил гравитации со стороны других тел.
* * *
В ноябре 1970 г. Стивен Хокинг только начинал делать успехи в физике. Он уже сделал несколько важных открытий, но еще не был знаменит. Продвигаясь по этой главе, мы увидим, как росло его влияние.
Как Хокинг, несмотря на серьезные проблемы со здоровьем, смог обойти таких научных лидеров, как Роджер Пенроуз, Вернер Израэль и (как мы увидим позже) Якова Борисовича Зельдовича? Они могли пользоваться руками, они могли рисовать картинки и проводить длиннейшие вычисления на бумаге — вычисления, в которых приходится по ходу дела записывать много сложных промежуточных результатов, возвращаться назад, рассматривать их поочередно и объединять, чтобы получить окончательный результат. Трудно представить себе, чтобы
Стивен Хокинг со своей женой Джейн и сыном Тимоти в Кембридже (Англия, 1980 г.) [Фото Кипа Торна]
такие вычисления можно было проделать в голове. К началу 1970-х годов руки Хокинга были почти полностью парализованы, он не мог ни рисовать картинки, ни записывать уравнения. Ему приходилось рассчитывать только на свою голову. Так как Хокинг постепенно терял контроль над руками, у него было много времени, чтобы приспособиться. Он постепенно тренировал свой мозг и приучал его размышлять в несвойственной другим физикам манере. Он прибегает к интуитивным мысленным образам и уравнениям, которые заменили для него бумагу. Мысленные образы и уравнения оказались для Хокинга более мощным орудием при решении некоторых проблем, чем старые бумажные методы. Он постепенно научился концентрироваться на решении именно тех проблем, для которых его умственный метод оказался наиболее действенным. И в этом ему не было равных.
Инвалидность Хокинга давала ему возможность не отвлекаться на второстепенные дела. Как он часто говорил, она освободила его от необходимости читать лекции студентам. Поэтому он имел гораздо больше свободного времени для научных исследований, чем его более здоровые коллеги. Что более важно, его болезнь давала ему новый импульс к жизни.