Журнал «Компьютерра» № 13 от 04 апреля 2006 года - Компьютерра (читать книги онлайн .txt) 📗
– Аппарат состоит из двух жидкокристаллических панелей, между которыми помещена специальная маска. Панели подключены к компьютеру, и на них выводятся изображения, рассчитанные с помощью искусственной нейросети. В результате в заданной области перед дисплеем формируется световое поле, которое соответствует трехмерному объекту, находящемуся за экраном. Идея гениально проста. «Гениальна» в том смысле, что проста. Для того чтобы появилось стереоизображение, необходимо, чтобы правый и левый глаза видели разные картинки. Как этого можно добиться? Обычно используют специальные очки: с красным и синим стеклами, поляризационные, shuttering[Очки, поочередно закрывающие правый и левый глаза. При этом на монитор выводится изображение, соответствующее открытому в данный момент глазу] и т. д. А здесь у вас просто есть два изображения, разнесенных по глубине. Когда вы на них смотрите, каждый глаз видит свою картинку (для левого и правого глаза суммируются разные пикселы, так как лучи идут под разными углами).
Это могли придумать несколько веков назад. На CеBIT 2000 мы ехали еще без дисплея. Уже была готовая численная модель, и мы показывали макет: рассчитали картинки, распечатали их на струйном принтере и закрепили канцелярскими зажимами к разнесенным по глубине стеклам. Если рассматривать такую конструкцию с определенного расстояния на свет, то будет видна объемная картинка. Есть довольно смешные фотографии, как наши высокопоставленные чиновники разглядывали такой самодельный «дисплей».
Вы говорили, что между панелями установлена маска. Зачем она нужна?
– Маска – это диффузор. Она необходима для того, чтобы бороться с муаром. Муар-эффект наблюдается при наложении любых регулярных структур: заборов, сетки рабицы и т. п. Его можно наблюдать и дома: например, если посмотреть на тюль, сложенный вдвое.
На LCD-панелях есть различимая черная решетка: на экран наклеена непрозрачная пленка, в которой вырезаны маленькие отверстия по форме пикселов, а промежутки образуют сетку. И когда мы устанавливаем два экрана друг за другом, эти сетки накладываются и появляется муар. (Кстати, сейчас многие производители LCD-панелей создают трудности для нашей технологии: ради улучшения контрастности они увеличивают ширину черной маски между пикселами.) Поэтому мы и устанавливаем диффузор – это такая тонкая пленка, которая слегка размывает изображение с заднего экрана и тем самым убирает тонкие полоски черной межпиксельной решетки. В результате остается только одна сетка (на переднем экране), а значит, решается проблема муара. Кроме того, диффузор значительно увеличивает угол обзора.
А как вы рассчитываете изображения для экранов?
– Для этого решается задача, аналогичная компьютерной томографии. У нас есть стереопара – то есть два изображения, соответствующие тому, что должен видеть каждый глаз. И надо так подобрать картинки для переднего и заднего экранов, чтобы при проецировании они складывались в заданную стереопару. Решение этой задачи – сложная математическая проблема[Здесь возникает так называемое уравнение Фредгольма первого рода. Эта задача некорректна, а ее решение неустойчиво]. Поэтому было решено использовать нейронные сети. Каждому пикселу ставится в соответствие по нейрону, а связи и весовые коэффициенты вычисляются из соображения геометрии прохождения лучей. Нейроны связаны тогда и только тогда, когда через соответствующие им пикселы проходит луч, попадающий в левый или правый глаз. Коэффициенты же подбираются в соответствии с характеристиками используемых LCD-панелей и диффузора.
Такая система позволяет быстро и эффективно вычислять проекции (фактически на каждый пиксель требуется лишь несколько простейших арифметических операций). Теперь, прогоняя заданные картинки через построенную нейронную сеть и сравнивая получаемые изображения с заданной стереопарой, мы при помощи метода последовательных приближений можем с достаточной точностью построить искомые изображения.
И сколько длится просчет одного кадра?
– Сначала алгоритм был реализован на CPU, и расчет одного кадра занимал не меньше двух минут. На современных процессорах все равно будет порядка одной минуты. В любом случае, для приложений реального времени это слишком много.
Лет шесть назад мой коллега, старший научный сотрудник Института высокопроизводительных вычислительных систем РАН Евгений Епихин заметил, что графическая карта имеет более мощный процессор, чем популярный тогда Pentium. В результате мы стали думать, как использовать GPU для нашей задачи. Оказалось, что при использовании нейросети задача идеально ложится на графический процессор. Довольно быстро мы смогли добиться гораздо более высокой производительности системы (около пятнадцати кадров в секунду).
Подождите, но ведь 2000 год – это максимум второй GeForce. А значит, ни о каких шейдерах и речи не шло?
– Конечно, пиксельных шейдеров тогда еще не было. Но нам удалось обойтись и без них. Мы воспользовались структурой предложенной системы, которая позволила представить трехмерный объект в виде суперпозиции двухмерных изображений. А для работы с плоскими объектами нам хватило стандартных операций с текстурами. Таким образом, мы «подручными средствами» смоделировали действие нашей нейронной сети. При этом получается огромный выигрыш по скорости, поскольку все операции выполняются на GPU, который именно под эти операции и оптимизирован.
Получается, что при таком подходе не учитывается влияние установленной между экранами размывающей маски?
– Да, действительно, до появления пиксельных шейдеров смоделировать действие маски в реальном времени не удавалось. Мы даже пытались заказать специальный DSP-процессор для решения этой проблемы, но по ряду причин и он не подошел. А на современных карточках нам удалось смоделировать более сложную нейронную сеть, учитывающую воздействие маски, и добиться производительности в 30 fps.
А есть реальные устройства на основе вашей технологии? Где они применяются?
– Да, есть. Я тогда работал в фирме NeurOK [www.neurok.ru], и было выпущено несколько готовых дисплеев, которые демонстрировались на крупнейших международных выставках, таких как Comdex и Infocomm. Насколько мне известно, было изготовлено несколько игровых автоматов для американского казино, кажется MGM. Нам удалось скооперироваться с одной фирмой, которая производила специальные установки на основе больших параболических зеркал. Если в такую оптическую систему поместить любой монитор, то изображение трансформируется, в результате чего получается иллюзия объема. Ну а когда туда поставили наши дисплеи, объем увеличился многократно.
А почему не удалось дальше раскрутиться?
– Просто рынок пока не готов. Ну, рынка как такового нет. Однажды на Comdex’е к нашему стенду подошел пожилой японец, долго стоял и смотрел, как мы общаемся с посетителями. Потом представился. Оказалось, что он в Sony руководил группой, которая продвигала цветной телевизор. Он сказал, что столкнулся с теми же проблемами, что и мы. Качество первых цветных телевизоров было низким, и все спрашивали: а зачем это нужно? Ведь на черно-белом телевизоре все и так прекрасно видно! Прошло время. И где вы сейчас найдете черно-белый телевизор?
Нам потенциальные производители и консьюмеры говорили, что все хорошо, только глубина изображения мала. То есть хочется, чтобы изображение прямо на тебя высовывалось. Но ведь нигде в жизни такого объема нет! Большой объем мы видим только тогда, когда объект приближается к нам вплотную, а при этом мы сразу начинаем нервничать.
Я сотрудничаю с оптиками из МИИГАиК[Московский Государственный университет геодезии и картографии, www.miigaik.ru], фотограмметрия – это их хлеб, а там стереоизображение используется для восстановления трехмерной структуры. Для обработки снимков специалисты обычно используют стереосистему со специальными очками. Так вот, они мне говорили, что относительно небольшой процент людей может долго работать с такой системой. То есть человек отработал день-второй-третий – и все, жалуется на постоянные головные боли. Мозг просто не может этого выносить, и как говорят, «глаза ломаются». Страшное напряжение, зачем это нужно?