Какой сейчас век? - Носовский Глеб Владимирович (электронные книги бесплатно TXT) 📗
Случайными мы называем ошибки, которые принципиально не могут быть скомпенсированы. Например, это случайные ошибки измерений, не имеющие регулярной составляющей.
Излагаемые ниже методы направлены, таким образом, на то, чтобы очистить звездный каталог от выбросов, скомпенсировать систематические ошибки и попытаться датировать каталог в условиях наличия лишь случайных ошибок. Отметим, что мы классифицируем лишь сами погрешности, но не их причины, которые здесь для нас безразличны.
Каждая звезда в каталоге характеризуется эклиптикальной широтой и долготой. В ряде исследований Альмагеста достоверность значений долгот была поставлена под серьезное сомнение. Например, в книге Р. Ньютона. Кроме того, известно, что измерение долгот – дело существенно более сложное, чем измерение широт. Для аккуратного определения долгот помимо прочего нужны хорошие часы. Поэтому есть серьезные основания считать долготы Альмагеста измеренными менее точно, чем широты. Проведенные нами расчеты подтвердили: точность долгот в Альмагесте существенно хуже точности широт, что делает долготы бесполезными для датировки. Наконец, поскольку долготы прецессируют со временем, то недобросовестный составитель каталога или его переписчик мог чрезвычайно легко "удревнить долготы" или, напротив, "омолодить" их, попросту добавляя к ним подходящую величину. При желании он мог, например, "поместить долготы" каталога на II век н. э.
Поэтому в своем методе мы анализировали лишь широты звезд Альмагеста. Заранее было неясно – достаточно ли широт для датировки. Оказалось, что ответ положительный. Мы утверждаем, что Альмагест можно датировать, используя лишь сведения о широтных невязках.
Действенность нашего метода была подтверждена анализом звездных каталогов Т. Браге, Улугбека, Гевелия и ряда искусственно созданных нами каталогов, для чего использовался компьютер. Во всех случаях полученные нашим методом датировки каталогов совпали с заранее известными.
Предварительная работа по выявлению выбросов в Альмагесте во многом была уже проделана в более ранних исследованиях. Мы считали выбросами те звезды, у которых значение широтных невязок превосходило 1 градус. Кроме явных выбросов каталог содержит звезды, отождествление которых со звездами современного неба сомнительно. В работе К. Петерса и Е. Кнобеля такие случаи также отмечены.
Один пример уже был приведен выше: это звезда О2 Эридана. Поэтому для исключения всех таких сомнительных случаев необходимо было очистить каталог Альмагеста от неоднозначно отождествляемых звезд. Мы проверили список из более чем 80 быстрых звезд из современного каталога (Hofflit D. "The Bright Star Catalogue"). Из них в Альмагесте, как выяснилось, отражено около 35 звезд. Затем мы выявили среди них звезды, имеющие неоднозначное, сомнительное отождествление. Таких звезд оказалось немного – всего три. Они были исключены из рассмотрения. Таким образом, наш анализ в основном подтвердил правильность отождествления подавляющего большинства звезд Альмагеста, приведенного в труде Петерса и Кнобеля.
Скажем кратко, чтобы не перегружать внимание читателей подробностями вычислительной работы (интересующихся отсылаем к нашим специальным книгам), о результатах нашего анализа систематических ошибок. Если рассмотреть какую-нибудь совокупность звезд, то систематическая ошибка в положении этих звезд на небесной сфере может состоять только лишь в перемещении совокупности звезд как единого целого по небесной сфере. Такое перемещение имеет три степени свободы и, следовательно, может быть описано тремя параметрами. Однако поскольку мы интересуемся лишь широтными невязками, то достаточно рассмотреть только двухпараметриче-ские вращения сферы. С вычислительной точки зрения удобно задать это вращение с помощью параметров? и?, где параметр? задает ось, вокруг которой вращается сфера, а параметр? задает угол поворота (см. рис. 2.7). А именно, мы выбираем в качестве у угол между осью весеннего равноденствия, рассчитанной на какой-либо год t, и осью поворота, лежащей в плоскости эклиптики, также относящейся к году t.
Итак, если предположить, что звездный каталог составлялся в год t и истинные широта и долгота какой-либо звезды были равны b(t) и l(/) соответственно, то в результате ошибки в определении положения эклиптики, парамеризуемой? =7(0 и? =? (t), составитель каталога запишет в каталог координаты bt) и t(t). С очень большой точностью можно считать, что
Последняя формула справедлива при условии, что составитель каталога не делал никакой ошибки измерений. Если ошибка присутствовала – а она присутствовала неизбежно – и равнялась X, то
Последняя формула справедлива для всех звезд рассматриваемой совокупности, и, следовательно, можно поставить статистическую проблему оценки параметров у и ф для данной совокупности звезд. Оценки параметров у и ф можно найти, например, методом наименьших квадратов, когда у и ф являются решением следующей задачи:
где суммирование производится по всем звездам i из рассматриваемой совокупности; bi – широта i-й звезды в каталоге Альмагеста, bi.(t), li(t) – истинные широта и долгота звезды i в году t.
Решением этой задачи являются параметры
задающие ошибку в определении положения эклиптики при условии, что звездный каталог был составлен в году t, а минимальное значение суммы представляет собой квадрат среднеквадратичной широтной ошибки в рассматриваемой совокупности звезд после компенсации систематической ошибки. Назовем это минимальное значение "остаточной ошибкой", то есть ошибкой, которая остается в каталоге после компенсации систематической составляющей.
Затем мы рассмотрели следующие семь совокупностей звезд, семь областей звездного неба Альмагеста (рис. 2.8):
ОБЛАСТЬ М – это Млечный Путь;
ОБЛАСТЬ А – большая область справа от Млечного Пути, содержащая точку осеннего равноденствия и завершающаяся зодиаком;
ОБЛАСТЬ В – это меньшая область слева от Млечного Пути, содержащая точку весеннего равноденствия и завершающаяся зодиаком;
ОБЛАСТЬ С – это южная часть неба справа от Млечного Пути, расположенная за зодиаком;
ОБЛАСТЬ D – это южная часть неба слева от Млечного Пути, расположенная за зодиаком;
ОБЛАСТЬ ZodA – это часть зодиака, попавшая в область А;
ОБЛАСТЬ ZodB – это другая часть зодиака, попавшая в область В.
Область А – самая большая из них. Через Zod мы обозначили все звезды зодиака в Альмагесте. Из рис. 2.1 видно, какие именно созвездия Альмагеста попали в эти выделенные нами семь областей звездного неба.
Для каждой из этих совокупностей звезд были найдены графики функций вместе с соответствующими доверительными интервалами. На рис. 2.9 показан вид этих кривых для области ZodA.
Также мы нашли среднеквадратичные ошибки до и после компенсации систематических ошибок. Анализ данных показывает, что наиболее хорошо измеренными в Альмагесте совокупностями звезд являются области А и ZodA. На каком основании сделан этот вывод?
Во– первых, сравниваются исходная и остаточная ошибки. Если это снижение значительно, -как в области ZodA, где ошибка снижается с уровня 22' до 13' – то есть основания говорить о малой величине случайной ошибки.