Секреты плодородной почвы. Самые эффективные удобрения - Кашин Сергей Павлович (книги хорошего качества .TXT) 📗
При увлажнении вода быстро поглощается грунтом. На его поверхности после высыхания не формируется корка, препятствующая проникновению необходимых компонентов питания в нижележащие горизонты. Супесчаные почвы отличаются способностью удерживать тепловую энергию и сохранять ее в течение достаточно длительного времени.
Мероприятия по окультуриванию. Для повышения плодородия супесчаных почв следует регулярно вносить торф, который способствует связыванию твердых частиц, составляющих грунт подобного качества. Нормализовать микрофлору позволит добавление навоза, минеральных веществ и компоста при весенней или осенней перекопке участка. Для достижения ожидаемого эффекта минеральные удобрения нужно использовать в небольшом количестве и достаточно часто.
Участки с каменистым грунтом обычно можно обнаружить на склонах гор и высоких холмов. В их механическом составе присутствует значительное количество камней и каменистых пород, характеризующихся высокой плотностью. Уровень плодородия почв данного типа чрезвычайно низок.
Среди преимуществ каменистых грунтов можно назвать хорошую прогреваемость солнечными лучами и способность довольно долго сохранять тепловую энергию. Однако они бедны микроорганизмами и питательными веществами, которые легко выветриваются и вымываются. Помимо всего прочего, каменистый грунт, подобно песчанику, характеризуется высокой водопроницаемостью.
Мероприятия по окультуриванию. Перед обработкой участка с каменистой почвой рекомендуется убрать крупные камни, после чего покрыть его слоем плодородного грунта. Такие почвы подходят для сооружения декоративных террас и альпинариев, на которых можно с успехом возделывать теплолюбивые садовые культуры.
В состав торфяно-болотистых почв входят главным образом компоненты органического происхождения. Кроме того, они содержат значительное количество азота, представленного в форме, непригодной для усвоения растений.
Торфяно-болотистые грунты бедны калием и фосфором. Однако последний является главным элементом так называемых торфяно-вивианитовых почв. Имеющиеся в них соединения фосфора недоступны для корневой системы садовых и огородных культур.
Для почвы данного типа характерен высокий уровень водо- и воздухопроницаемости. Однако она отличается чрезмерной влажностью и плохо прогревается. По структуре такие грунты сходны с поролоном, который быстро впитывает влагу, но также легко отдает ее.
Мероприятия по окультуриванию. Действия, направленные на улучшение физико-химических качеств торфяно-болотистых почв, нужно проводить следующим образом. Прежде всего, следует нормализовать процесс распада органических элементов, вследствие которого происходит выход азота и его трансформация в форму, доступную для усвоения растениями. При этом требуется создать благоприятные условия для развития микрофлоры грунта. Для достижения такой цели рекомендуется регулярно подпитывать почву микробиологическими веществами, компостом, древесными опилками, навозной жижей и навозом. Кроме того, при проведении мероприятий по окультуриванию торфяно-болотистые почвы необходимо улучшать, внося калийные и фосфорные удобрения. При обработке торфяно-вивианитовых грунтов количество фосфорных удобрений нужно уменьшить в 2 раза.
Повысить уровень пористости торфяно-болотистых почв можно путем внесения глиняной муки, компоста или крупнозернистого песка.
Минеральный состав грунта
Минеральные вещества составляют до 97 % от общей массы почвы. Их состав неоднороден и различается для грунтов разных видов. Минеральный состав почвы того или иного вида не сходен с набором компонентов, содержащихся в материнской породе. Причем чем старше грунт, тем более выраженным становится это различие.
Все минералы, содержащиеся в почве, можно условно разделить на первичные и вторичные.
В первую группу входят минералы, которые являются остаточными и сохраняются в грунте в период протекания почвообразовательных процессов и выветривания. В зоне повышенной подвижности большая часть подобных веществ распадается. Прежде всего происходит разрушение таких минералов, как амфиболы, нефелин, оливин и пироксены.
Относительно большей устойчивостью (по сравнению с названными выше минералами) обладают полевые шпаты. Их содержание в грунте достигает обычно 10–15 % от всей массы твердых фракций. В большинстве случаев это частицы, имеющие довольно крупный размер.
Высокой устойчивостью к разрушению характеризуются такие минеральные вещества, как циркон, эпидот, гранат, турмалин, дистен и ставролит. Они в небольшом количестве представлены в составе грунта. По данным их анализа можно делать заключения о характере протекания почвообразовательного процесса и времени образования материнской породы.
Самой высокой степенью стойкости обладает кварц. Период его сохранения в почве без разрушения может достигать несколько миллионов лет. Именно благодаря высоким физическим и химическим качествам (даже несмотря на интенсивное и продолжительное выветривание, приводящее к выносу продуктов распада) кварц способен накапливаться в грунте в довольно большом количестве.
Вторичные минеральные отложения (вторая группа) образуются в грунте путем трансформации первичных либо в результате протекающего процесса синтеза. Особое значение для почвообразования имеют так называемые глинистые минералы – монтмориллонит, каолинит, серпентин и галлуазит. Для них характерны высокая сорбционная способность, значительное увеличение объемов при воздействии воды и хорошее удержание влаги, высокий уровень липкости и существенные показатели анионного и катионного обменов. Именно такие минералы определяют поглотительные качества грунта, его структуру и степень плодородия.
Помимо описанных выше компонентов, в почве содержатся гидроксиды железа (гематит, лимонит), алюминия (гиббсит) и марганца (пиролюзит, вернадит, манганит). Эти вещества оказывают влияние на процесс становления почвенной структуры, характер и интенсивность поглотительных и окислительно-восстановительных процессов.
Кроме того, в минеральном составе грунтов различных видов были обнаружены карбонаты, ведущее место среди которых принадлежит арагониту и кальциту. Для грунтов аридной зоны характерно также присутствие легкорастворимых солей (карбоната натрия и хлорида натрия). Подобные компоненты необходимы для нормального протекания почвообразовательного процесса.
Органический состав грунта
Согласно данным исследований, в состав почвы входит сравнительно небольшое количество компонентов органического происхождения. Содержание таких веществ зависит от типа грунта. Например, в торфяниках оно максимальное, а в почвах других видов – незначительное (с преобладанием в верхних слоях).
Органический состав почвы представлен животными и растительными остатками, которые могут сохранять анатомическую структуру либо быть в форме химических соединений, известных как гумус. В последнем содержатся такие вещества, как углеводы, липиды, пигменты, флавоноиды, лигнин и пр. Их доля составляет в среднем не более 15 % от общей массы.
Специфическими компонентами гумуса являются гумусовые кислоты. В настоящее время их невозможно описать с помощью химической формулы. Они образуют класс высокомолекулярных соединений. Современные российские ученые говорят о присутствии в почве гумусовых кислот двух видов – гуминовых и фульвокислоты.
В составе первых присутствуют следующие компоненты: азот (3–6 %), углерод (46–62 %), кислород (32–38 %) и водород (3–5 %). Составляющими фульвокислот являются те же вещества: азот (3–4 %), углерод (36–44 %), кислород (45–50 %) и водород (3–5 %). Во всех гумусовых кислотах, помимо этого, содержатся фосфор и сера.
Фульвокислоты отличаются от гуминовых большей динамикой и повышенным уровнем растворимости. По соотношению между ними судят о качестве почвы. Однако даже в наши дни ученые не могут точно описать процесс формирования гумусовых кислот. Одни почвоведы выдвигают так называемую конденсационную гипотезу и говорят о том, что указанные соединения образуются вследствие синтеза на основе низкомолекулярных структур органического происхождения. Согласно гипотезе, автором которой является Л. Н. Александрова, формирование гумусовых кислот происходит при взаимодействии высокомолекулярных компонентов – биополимеров и белков, которые в дальнейшем подвергаются окислению и расщеплению.