The World is Flat - Friedman Thomas (читать книги без сокращений .TXT) 📗
Netscape eventually fell victim to overwhelming (and, the courts decided, monopolistic) competitive pressure from Microsoft. Microsoft's decision to give away its browser, Internet Explorer, as part of its dominant Windows operating system, combined with its ability to throw more programmers at Web browsing than Netscape, led to the increasing slippage of Netscape's market share. In the end, Netscape was sold for $10 billion to AOL, which never did much with it. But though Netscape may have been only a shooting star in commercial terms, what a star it was, and what a trail it left.
“We were profitable almost from the start,” said Barksdale. “Netscape was not a dot-com. We did not participate in the dot-com bubble. We started the dot-com bubble.”
And what a bubble it was. “Netscape going public stimulated a lot of things,” said Barksdale. “The technologists loved the new technology things it could do, and the businesspeople and regular folks got excited about how much money they could make. People saw all those young kids making money out of this and said, 'If those young kids can do this and make all that money, I can too.' Greed can be a bad thing-folks thought they could make a lot of money without a lot of work. It certainly led to a degree of overinvestment, putting it mildly. Every sillier and sillier idea got funded.”
What was it that stimulated investors to believe that demand for Internet usage and Internet-related products would be infinite? The short answer is digitization. Once the PC-Windows revolution demonstrated to everyone the value of being able to digitize information and manipulate it on computers and word processors, and once the browser brought the Internet alive and made Web pages sing and dance and display, everyone wanted everything digitized as much as possible so they could send it to someone else down the Internet pipes. Thus began the digitization revolution. Digitization is that magic process by which words, music, data, films, files, and pictures are turned into bits and bytes-combinations of Is and Os-that can be manipulated on a computer screen, stored on a microprocessor, or transmitted over satellites and fiber-optic lines. It used to be the post office was where I went to send my mail, but once the Internet came alive, I wanted my mail digitized so I could e-mail it. Photography used to be a cumbersome process involving film coated with silver dug up from mines halfway across the world. I used to take some pictures with my camera, then bring the film to the drugstore to be sent off to a big plant somewhere for processing. But once the Internet made it possible to send pictures around the world, attached to or in e-mails, I didn't want to use silver film anymore. I wanted to take pictures in the digital format, which could be uploaded, not developed. (And by the way, I didn't want to be confined to using a camera to take them. I wanted to be able to use my cell phone to do it.) I used to have to go to Barnes & Noble to buy and browse books, but once the Internet came alive, I wanted to browse for books digitally on Amazon.com as well. I used to go to the library to do research, but now I wanted to do it digitally through Google or Yahoo!, not just by roaming the stacks. I used to buy a CD to listen to Simon and Garfunkel-CDs had already replaced albums as a form of digitized music-but once the Internet came alive, I wanted those music bits to be even more malleable and mobile. I wanted to be able to download them into an iPod. In recent years the digitization technology evolved so I could do just that.
Well, as investors watched this mad rush to digitize everything, they said to themselves, “Holy cow. If everyone wants all this stuff digitized and turned into bits and transmitted over the Internet, the demand for Web service companies and the demand for fiber-optic cables to handle all this digitized stuff around the world is going to be limitless! You cannot lose if you invest in this!”
And thus was the bubble born.
Overinvestment is not necessarily a bad thing-provided that it is eventually corrected. I'll always remember a news conference that Microsoft chairman Bill Gates held at the 1999 World Economic Forum in Davos, at the height of the tech bubble. Over and over again, Gates was bombarded by reporters with versions of the question, “Mr. Gates, these Internet stocks, they're a bubble, right? Surely they're a bubble. They must be a bubble?” Finally an exasperated Gates said to the reporters something to the effect of, “Look, you bozos, of course they're a bubble, but you're all missing the point. This bubble is attracting so much new capital to this Internet industry, it is going to drive innovation faster and faster.” Gates compared the Internet to the gold rush, the idea being that more money was made selling Levi's, picks, shovels, and hotel rooms to the gold diggers than from digging up gold from the earth. Gates was right: Booms and bubbles may be economically dangerous; they may end up with many people losing money and a lot of companies going bankrupt. But they also often do drive innovation faster and faster, and the sheer overcapacity that they spur-whether it is in railroad lines or automobiles-can create its own unintended positive consequences.
That is what happened with the Internet stock boom. It sparked a huge overinvestment in fiber-optic cable companies, which then laid massive amounts of fiber-optic cable on land and under the oceans, which dramatically drove down the cost of making a phone call or transmitting data anywhere in the world.
The first commercial installation of a fiber-optic system was in 1977, after which fiber slowly began to replace copper telephone wires, because it could carry data and digitized voices much farther and faster in larger quantities. According to Howstuffworks.com, fiber optics are made up of strands of optically pure glass each “as thin as a human hair,” which are arranged in bundles, called “optical cables,” to carry digitized packets of information over long distances. Because these optical fibers are so much thinner than copper wires, more fibers can be bundled into a given diameter of cable than can copper wires, which means that much more data or many more voices can be sent over the same cable at a lower cost. The most important benefit of fiber, though, derives from the dramatically higher bandwidth of the signals it can transport over long distances. Copper wires can carry very high frequencies too, but only for a few feet before the signal starts to degrade in strength due to certain parasitic effects. Optical fibers, by contrast, can carry very high-frequency optical pulses on the same individual fiber without substantial signal degradation for many, many miles.
The way fiber-optic cables work, explains one of the manufacturers, ARC Electronics, on its Web site, is by converting data or voices into light pulses and then transmitting them down fiber lines, instead of using electronic pulses to transmit information down copper lines. At one end of the fiber-optic system is a transmitter. The transmitter accepts coded electronic pulse information-words or data-coming from copper wire out of your home telephone or office computer. The transmitter then processes and translates those digitized, electronically coded words or data into equivalently coded light pulses. A light-emitting diode (LED) or an injection-laser diode (ILD) can be used to generate the light pulses, which are then funneled down the fiber-optic cable. The cable functions as a kind of light guide, guiding the light pulses introduced at one end of the cable through to the other end, where a light-sensitive receiver converts the pulses back into the electronic digital Is and Os of the original signal, so they can then show up on your computer screen as e-mail or in your cell phone as a voice. Fiber-optic cable is also ideal for secure communications, because it is very difficult to tap.