Книга по химии для домашнего чтения - Степин Борис Дмитриевич (читать книги онлайн бесплатно полностью без .txt) 📗
замещает иод в его молекуле:
Ps + I2 = PsI + I,
может присоединяться к атому водорода:
Ps + H = PsH.
Последнее соединение является не двухатомной молекулой, а атомом, в котором в поле действия протона p+ находятся два электрона e- и позитрон е+ .
Синтезированы атомы, состоящие из положительно заряженного мюона Mu+ и электрона, получившие название атомов мюония. Эти атомы напоминают атомы водорода, только вместо протона в ядре находится мюон с массой покоя в 200 раз большей массы электрона. Мюоний, как и позитроний, нестабилен и существует около 10-6 с. Позитроний и мюоний не относятся к атомам химических элементов Периодической системы Менделеева.
4.13. КАКОЕ НАЗВАНИЕ ХИМИЧЕСКОГО ЭЛЕМЕНТА САМОЕ КУРЬЕЗНОЕ?
Наверное, все согласятся, что это название элемента № 33 — мышьяка, символ As. Русское название произошло от слова «мышь». Ядовитые препараты мышьяка использовали в старину для истребления мышей и крыс. Не следует думать, что русское название этого элемента является каким-то исключительным. Сербы и хорваты называют элемент № 33 «мишомором», азербайджанцы и узбеки — «маргумушем»: «мушь» — мышь, а «мар» — убить. А арабское название «арса наки» означает «глубоко проникающий яд». Это слово созвучно латинскому названию элемента № 33 — «арсеникум» и греческому — «арсен и кон». Любопытно, что слово «арсен» по-гречески означает «мужественный, сильный». Поэтому в XIX в. выдвигалось предположение, что русское имя элемента происходит не от слова «мышь», а от слова «муж», будто бы существовал на Руси в древние времена термин «мужьяк», и лишь впоследствии он «переродился» в название мышьяк (см. 4.23).
4.14. ВПЕЧАТЛИТЕЛЬНЫЕ ХИМИКИ
Что больше отражено в названиях химических элементов: цвет простых веществ, их запах или вкус?
Если судить по названиям химических элементов, открытых химиками, то последних больше всего впечатлял цвет простых веществ и цвет спектральных линий в спектрах излучения соединений новых элементов. Так, хлор Cl в переводе с греческого слова «хлорос» означает желто-зеленый (см. 4.37). Иод I получил свое название по цвету своего пара. В переводе с греческого «иодес» означает — фиолетовый (см. 4.39). Твердой сере S8 дали имя, производное от древнеиндийского слова «сира» — светло-желтый цвет. Название элемента родия Rh произошло от греческого слова «родон» — роза, по розовому цвету ряда соединений родия, а иридия Ir — от греческого слова «ирис» — радуга, из-за разнообразия окраски солей иридия. Элемент хром Cr получил свое имя от греческого слова «хрома» — окраска, цвет. Соли хрома почти всегда окрашены.
После изобретения спектроскопа стало возможным устанавливать присутствие элемента по набору цветных линий в спектре излучения его соединений. Элемент таллий Tl назван по ярко- зеленой линии с длиной волны 535 нм. Греческое слово «таллос» означает молодую зеленую ветку. Элемент рубидий Rb получил название по двум темно-красным линиям 780 и 795 нм в спектре его солей. Латинское слово «рубидус» означает темно-красный. Название элемента цезия Cs произошло от слова «цезиум», что у древних римлян означало голубой цвет верхней части «небесного свода». В спектре излучения солей цезия обнаружены две голубые линии с длиной волны 455 и 459 нм. Название индий элемент № 49, символ In, получил по цвету синей линии в спектре излучения его солей, имеющей длину волны 451 нм, цвет которой был очень похож на цвет древней синей краски индиго.
Только два элемента названы по запаху их простых веществ: это бром Br, греческое слово «бромос» означает зловоние (см. 4.38), и элемент осмий Os, греческое слово «осме» в переводе означает запах (см. 4.48). Тетраоксид осмия OsO4 имеет резкий запах.
По вкусу простого вещества не назван ни один химический элемент.
4.15. СОБСТВЕННЫЕ ИМЕНА ИЗОТОПОВ
Изотопы (см. 4.60) всех химических элементов, кроме изотопов водорода, названий не имеют. Для изотопов же водорода AZH приняты следующие наименования: 11H — протий 21H = D — дейтерий, 31H = Т — тритий. Только четвертый изотоп 41H, неизвестный в природе, не получил специального названия и символа.
Ядра первых трех изотопов также носят специальные названия: протон p+ , дейтрон d и тритон t. Тритий, в отличие от протия и дейтерия, радиоактивен, он испускает мягкие β-лучи с периодом полураспада 12,3 года, превращаясь в атомы гелия 32He. В обычной воде один атом трития приходится на 1018 атомов протия. Это означает, что во всей гидросфере Земли находится не более 100 кг трития.
Земной тритий — космического происхождения: нейтроны космоса превращают атомы азота в атомы углерода и трития:
147N + 10n = 126C + 31H(T).
Искусственный тритий получают в ядерных реакторах при взаимодействии атомов лития Li с нейтронами:
63Li + 10n = 73Li = 42He + Т.
4.16. ЕСТЕСТВЕННО РАДИОАКТИВНЫЕ
Это калий K и рубидий Rb, создающие ту фоновую радиацию, в которой человечество жило тысячелетиями.
Элемент K (порядковый номер 19), встречающийся в природе в значительном количестве (2,5%), имеет три изотопа (см. 4.60): 39K (93,26%), 41K (6,73%), 40K (0,01%). Только последний изотоп радиоактивен. Половина атомов изотопа распадается за 1,3∙109 лет. Такое время называют периодом полураспада:
4019K = 4020Ca + e-↑; 4019Ca + e- = 4018Ar.
При распаде ядра 40K в 88% случаев испускается электрон e- и образуется изотоп кальция 4020Ca, а в 12% — происходит захват ядром электрона с нижнего энергетического уровня (K-захват) и появляется изотоп аргона 4018Ar. При захвате ядром электрона протон ядра превращается в нейтрон, в результате чего атомный номер (см. 4.4) элемента уменьшается на единицу, т. е. ядро калия превращается в ядро аргона. Ежегодно из 1 г калия образуется около 4∙10-12 мл аргона, поступающего в атмосферу (см. 4.6, 4.29). Миллиарды лет назад изотоп 40K был одним из главных генераторов теплоты в земной коре. Его тогда было много, примерно 2%.
Рассеянный; природе элемент Rb (порядковый номер 37) обнаружен во всех минералах и водах, содержащих калий. Рубидий является тенью калия. У нею есть два изотопа: 85Rb (72,2%) и 87Rb (27,8%). Последний изотоп радиоактивен:
8737Rb = 8738Sr + е-↑.
Период полураспада этого изотопа равен 5∙1010 лет. Найдено, что 1% всего земного стронция Sr образовался в результате распада ядер 87Rb, который, кстати, помог установить, что Земля «живет на свете» уже приблизительно 4,5 млрд. лет.