Почему у пингвинов не мерзнут лапы? и еще 114 вопросов, которые поставят в тупик любого ученого - О'Хара Мик
Поэтому производителям самолетов не остается ничего другого, кроме как заботиться о герметичности пассажирского салона. Это — серьезная техническая задача. На высоте 12 000 метров, где давление составляет одну пятую часть давления на уровне моря, внутреннее давление стремится разорвать фюзеляж. Это давление приходится сдерживать, а также следить за тем, чтобы вся нагрузка на фюзеляж в полете не превышала безопасную допустимую. Если свести до минимума разницу давления снаружи и изнутри, фюзеляж может быть более дешевым и легким.
Для гражданских авиалайнеров это означает, что давление внутри самолета во время полета в постоянном режиме держится на нижнем возможном пределе — 2500 метров. Это максимальный уровень, который может вынести здоровый человек, не испытав побочных эффектов. Но физически слабые люди, пассажиры с заболеваниями дыхательной системы, а также те, кто во время ожидания в аэропорту злоупотребил спиртным, чувствуют себя плохо даже при таких условиях.
Есть еще одна проблема: не все аэродромы расположены на одинаковой высоте над уровнем моря. Возьмем крайний случай: полет из Хитроу в Англии в Ла-Пас в Боливии сопряжен с подъемом на 5200 метров над уровнем моря, где давление воздуха вполовину меньше, чем на уровне моря. В таких условиях невозможно поддерживать одинаковое давление на всем протяжении полета. Представьте, что произошло, если бы давление внутри и снаружи самолета было бы разным к моменту, когда открывают двери — зрелище получилось бы эффектным, но крайне нежелательным.
Что касается закладывания ушей, в наши дни давление внутри самолета «ради безопасности и комфорта пассажиров» незаметно снижают и по мере взлета за ним следит бортовой компьютер. Давление постепенно увеличивают (или, как в случае с рейсами в Ла-Пас и другие высокогорные аэродромы, снижают) при снижении, чтобы к тому моменту, когда самолет остановится на посадочной полосе, давление в салоне и за его пределами выровнялось. Обычно для ушей достаточно времени, чтобы приспособиться к нему, но если никакие средства не помогают, зажмите нос и медленно, но решительно наращивайте давление в носоглотке, пока не почувствуете, что оно выровнялось.
Терренс Холлингворт Бланьяк, Франция
Преимущество полетов на «Конкорде» заключалось в том, что фюзеляж этого самолета был особо прочным, предназначенным для больших высот, поэтому давление в салоне могло соответствовать давлению на высоте 900 метров над уровнем моря.
Артур Кокс Алтон, Гемпшир, Великобритания
«Почему иллюминаторы на кораблях круглые? Когда зародилась эта традиция?»
Полагаю, автор вопроса видел на старинных картинах и гравюрах деревянные корабли с иллюминаторами (скорее всего, орудийными портами) квадратной или прямоугольной формы и задумался о том, почему на судах со стальным корпусом иллюминаторы круглые.
Когда корабли делали из дерева, их конструкционные элементы были волокнистыми и довольно гибкими (деревянные суда громко скрипели, так как дерево гнулось под напором волн). Однако дерево, особенно сырое, чрезвычайно устойчиво к напряжению усталости. Попробуйте сломать мокрый ивовый прутик, сгибая его в разные стороны, а затем повторите то же самое со стальным прутиком такой же толщины. Материалы на основе железа (в сущности, большинство металлов) подвержены кристаллическому разрушению в результате изменений в структуре частиц, вызванных постоянной сменой напряжений. Эффект проявляется по-разному, в зависимости от поперечного сечения, тепловой обработки, углеродного содержания и присутствующих в сплаве добавок.
Ближе к концу XIX века большинство торговых, а потом и военных судов начали строить с металлической обшивкой. Кораблестроители быстро обнаружили, что любые прямоугольные или квадратные отверстия в корабле, будь то на палубе (люки) или на боку (порты и иллюминаторы), являются источником усталости металла, которая прежде всего проявляется по углам. Корпус корабля буквально раздирает на части из-за циклов сгибания под действием волн; чем сильнее штормит море, тем выше напряжение.
Незадачливые матросы обнаруживали, что в самые страшные штормы их корабль просто разваливался на части. Поэтому кораблестроители придумали круглые иллюминаторы и скруглили углы палубных люков. Острых углов, в которых концентрировалось напряжение, на корабле не осталось.
Дэвид Лорд Олдершот, Гемпшир, Великобритания
«Мне с детства не дает покоя один парадокс. Представим, что муха летит навстречу движущемуся поезду. Происходит лобовое столкновение. Когда муха ударяется о переднюю часть поезда, направление ее движения меняется на 180° поскольку она разбивается и продолжает двигаться вместе с поездом в виде бесформенной лепешки на стекле.
В тот момент, когда муха меняет направление движения, она должна быть неподвижной, и в этот же момент она ударяется о стекло поезда, следовательно, и поезд должен быть неподвижным. Таким образом, муха может остановить поезд. Где здесь нелогичность и какое отношение все это имеет к устройству британских железных дорог?»
Вы правы. Муха действительно останавливает поезд, но не целиком, а только маленькую часть, с которой соприкасается, да и то ненадолго.
Какими бы жесткими ни казались предметы, в какой-то степени они податливы. Так и ветровое стекло поезда, о которое ударяется муха, слегка прогибается назад. Эта частица поезда не только останавливается на миг, но и совершает движение в обратном направлении.
Для этого требуется значительная сила (все-таки стекло обладает жесткостью), но следует помнить, что в подобных столкновениях обычно участвуют силы большой величины.
Сила, с которой муха действует на поезд, имеет такую же величину, как и сила, с которой поезд действует на муху, — она довольно велика. Воздействуя на муху с незначительной массой, эта сила создает огромное ускорение. В сущности, ускорение мухи так велико, что на кратком участке пути, за время прохождения которого прогибается ветровое стекло, оно равно ускорению поезда.
Придав мухе эту скорость, ветровое стекло пружинит и возвращается на прежнее место, принимая обычную форму. Поскольку обратное движение происходит очень быстро и деформированная часть буквально рывком возвращается в прежнее положение, возникает вибрация, с помощью которой стекло восстанавливает форму. Так появляется звук, который мы слышим, когда муха ударяется о ветровое стекло.
Эта простая картина дополнена и усложнена такими факторами, как деформация тела мухи и влияние инерции на стекло, но она, тем не менее, демонстрирует основные действующие принципы.
Эрик Дэвис Перт, Западная Австралия
Автор вопроса прав, полагая, что в определенный момент муха неподвижна. Но в этот момент она не ударяется о переднюю часть поезда.
При соприкосновении ветрового стекла поезда с мухой (пренебрежем тем фактом, что поезд гонит перед собой стену воздуха) мухе придается ускорение, направленное вперед, к поезду. За очень краткий, но конечный период времени, который требуется поезду, чтобы преодолеть расстояние, равное длине тела мухи, муха сплющивается и приобретает ускорение. Таким образом, в момент, когда муха становится неподвижной, ее передняя часть процентов на десять успевает стать шлепком на окне поезда. При этом скорость поезда остается постоянной. К тому времени, как о стекло полностью разобьется остаток мухи, что при скорости 200 километров в час произойдет на 2 х 10-4 секунды позже, муха наберет ускорение в соответствии со скоростью поезда и будет продолжать двигаться вместе с ним в совершенно расплющенном виде.