Mybrary.info
mybrary.info » Книги » Детские » Детская образовательная литература » Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева - Кин Сэм (читать хорошую книгу TXT) 📗

Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева - Кин Сэм (читать хорошую книгу TXT) 📗

Тут можно читать бесплатно Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева - Кин Сэм (читать хорошую книгу TXT) 📗. Жанр: Детская образовательная литература. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Если двигаться по таблице слева направо, то количество электронов у каждого следующего элемента на один больше, чем у его «западного» соседа. Так, у натрия, одиннадцатого элемента, как правило, 11 электронов, у магния – двенадцатого – 12 электронов и так далее. По мере укрупнения атомов электроны в них распределяются не только на различных электронных уровнях, но и на так называемых оболочках (подуровнях), имеющих разнообразные формы. Атомы по природе прозаичны и предсказуемы. Они заполняют и оболочки, и электронные уровни в одном и том же порядке – он прослеживается во всей таблице. Элементы, находящиеся на левом краю таблицы, размещают первый электрон на s-оболочке, она сферическая. Эта оболочка маленькая, на ней умещается всего два электрона – так образуются два сравнительно высоких столбца слева. Уложив два электрона, атом ищет более вместительное хранилище. Элементы в правой части таблицы начинают упаковывать электроны один за другим на р-оболочку – по форме она немного напоминает человеческое легкое. На р-оболочке умещается шесть электронов, поэтому в правой части таблицы мы видим шесть высоких столбцов. Обратите внимание: во всех верхних рядах два электрона s-оболочки суммируются с шестью электронами р-оболочки, всего получается восемь электронов. Именно столько электронов на верхнем уровне требуется большинству атомов для полного комплекта. И, если не считать самодостаточных благородных газов, все элементы предоставляют электроны с внешнего уровня для обмена при химических реакциях. Поведение этих элементов вполне логично: с добавлением нового электрона атом может предложить больше электронов для участия в реакциях.

Теперь переходим к сложной части. Переходные металлы занимают с третьего по двенадцатый столбец в рядах с четвертого по семнадцатый. Они размещают электроны на d-оболочках, на каждой из которых умещается по 10 электронов. По форме d-орбитали больше всего напоминают несуразных зверюшек, свернутых из воздушных шариков. Мы уже знаем, как элемент заполняет свои электронные оболочки, поэтому можем предположить, что переходные металлы будут выкладывать все дополнительные электроны с d-оболочек на внешний энергетический уровень и использовать их для участия в реакциях. Но нет! Переходные металлы запасают свои дополнительные электроны и прячут их под другими энергетическими уровнями. Это «решение» переходных металлов нарушить общепринятые нормы и упрятать свои d-электроны кажется некрасивым и нелогичным – Платону бы это не понравилось. Но так устроена природа, ничего с этим не поделаешь.

Но, как бы ни был сложен этот процесс, у него есть смысл. В принципе, если мы движемся по таблице горизонтально, с добавлением нового электрона к каждому переходному металлу свойства элемента должны немного меняться. Но, поскольку электроны с d-оболочек спрятаны глубоко в недрах атома, как в выдвижных ящиках с двойным дном, они словно скрыты под броней. Другие атомы, пытающиеся реагировать с металлами, не могут получить доступа к этим электронам, и получается, что многие металлы в ряду выделяют для химических реакций практически одинаковое количество электронов. Поэтому они очень похожи друг на друга в химическом отношении. Вот почему с научной точки зрения многие металлы выглядят и ведут себя почти одинаково. Все они – серые и холодные, поскольку их внешние электроны не оставляют им выбора, а заставляют приспосабливаться к обстоятельствам. Разумеется, чтобы еще более запутать ситуацию, некоторые скрытые в глубине электроны иногда всплывают наверх и начинают участвовать в реакциях. Этим объясняются небольшие различия между некоторыми металлами и сложность их химических реакций.

Элементы с f-оболочками также довольно беспорядочны. F-оболочка появляется в первом из двух рядов металлов, расположенных под основной частью таблицы, – это группа лантаноидов. Лантаноиды также именуются «редкоземельными элементами». Если считать по номерам, от пятьдесят седьмого до семьдесят первого, то все лантаноиды следовало бы расположить в шестом ряду. Но их принято выносить в отдельный нижний ряд, чтобы таблица оставалась более компактной и менее громоздкой. Лантаноиды прячут новые электроны еще глубже, чем переходные металлы, зачастую на два энергетических уровня ниже. Таким образом, они еще более схожи между собой, нежели переходные металлы, их едва можно отличить друг от друга. Движение вдоль этого ряда напоминает поездку из Небраски в Южную Дакоту – вы куда-то едете и даже не замечаете, что пересекаете границы штатов.

В природе практически невозможно найти образец чистого лантаноида, поскольку они всегда перемешаны друг с другом. Известен случай, в котором один химик из Нью-Гемпшира попытался выделить тулий, элемент номер шестьдесят девять. Он начал работать с огромными емкостями, наполненными тулиевой рудой. Ученый многократно обрабатывал руду различными химическими реагентами и кипятил смесь, на каждом этапе работы очищая небольшое количество металла. Растворение длилось так долго, что поначалу удавалось выполнить всего один-два цикла очистки в день. Но он выполнил этот трудоемкий процесс пятнадцать тысяч раз вручную и добыл из сотен фунтов руды всего несколько унций достаточно чистого металла [12]. Но даже в этой толике присутствовали небольшие примеси других лантаноидов. Их электроны были скрыты так глубоко, что никакие химические реагенты не позволяли их связать.

Электронные взаимодействия – это основа периодической системы. Но, чтобы по-настоящему понимать элементы, нельзя игнорировать ту часть, которая составляет до 99 % атомной массы – я говорю о ядре. И если электроны подчиняются законам, сформулированным величайшим ученым, так и не получившим Нобелевской премии, то ядро работает по законам, описанным самым парадоксальным нобелевским лауреатом в истории. Это была женщина, чей путь в науке складывался еще сложнее, чем у Льюиса.

Мария Гёпперт родилась в Германии в 1906 году. Ее отец был профессором в шестом поколении, но тем не менее Мария никак не могла убедить ученых мужей, что женщина тоже может поступить в аспирантуру. Поэтому она училась то на одном курсе, то на другом, слушая лекции везде, где могла. Наконец она получила докторскую степень в Ганноверском университете, защитив диссертацию перед советом профессоров, у которых никогда не училась. Неудивительно, что без связей и рекомендаций она и после защиты не могла поступить на работу ни в один университет. Гёпперт смогла попасть в науку лишь окольным путем, заручившись помощью своего мужа, Джозефа Майера. Майер был американским профессором химии, приглашенным в Германию. Вместе с ним Мария в 1930 году уехала в Балтимор и под новой фамилией Гёпперт-Майер стала всюду следовать за мужем – на работу и на конференции. К сожалению, в годы Великой депрессии Майер несколько раз оказывался без работы, семья была вынуждена перебраться в Нью-Йорк, а затем в Чикаго.

В большинстве университетов снисходительно относились к привычке Гёпперт-Майер присутствовать на ученых собраниях и беседовать о науке. Кто-то даже снизошел до того, что предложил ей работу, правда, неоплачиваемую. Темы для нее подбирались типично «женские» – например, исследование природы цвета. После окончания Великой депрессии сотни ученых собрались под эгидой Манхэттенского проекта – возможно, самого впечатляющего мероприятия по обмену научными идеями в истории человечества. Гёпперт-Майер также получила приглашение к участию, но на периферии, в бесполезном побочном проекте, посвященном выделению урана при помощи фотохимических реакций. Несомненно, в глубине души она раздражалась из-за такого удела, но тяга Марии к науке была так велика, что она согласилась работать и на этих условиях. После окончания Второй мировой войны в университете Чикаго к Гёпперт-Майер наконец-то отнеслись серьезно и предложили должность профессора физики. Она получила собственный кабинет, но факультет так и не платил ей.

Тем не менее Гёпперт-Майер, воодушевленная этим назначением, в 1948 году занялась исследованиями ядра – сердцевины и сущности атома. Количество протонов – положительно заряженных частиц, находящихся в ядре, – и определяет сущность атома. Иными словами, если атом теряет или приобретает протоны, он превращается в другой атом. Как правило, атомы не теряют и нейтронов, но в атомах одного элемента может содержаться разное количество нейтронов. Такие разновидности атомов называются изотопами. Например, изотопы свинца-204 и свинца-206 имеют одинаковый атомный номер (82), но разное количество нейтронов (122 и 124 соответственно). Атомный номер плюс количество нейтронов определяют массу атома. Ученым потребовалось немало лет, чтобы полностью описать взаимосвязи между атомным номером и атомной массой, но после того, как это удалось, устройство периодической системы значительно прояснилось.

вернуться

12

Британские меры веса; фунт равен примерно 453 г, унция – 28,34 г. – Прим. пер.

Перейти на страницу:

Кин Сэм читать все книги автора по порядку

Кин Сэм - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева отзывы

Отзывы читателей о книге Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева, автор: Кин Сэм. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*