Самые знаменитые головоломки мира - Лойд Сэм (читать книги бесплатно txt) 📗
Я знавал одного пожилого эксцентричного садовника, который имел обыкновение размещать в своем саду саженцы фруктовых деревьев так, чтобы никто, кроме него самого, не сумел определить, где какое дерево. Объясняя эту странность, он говорил, что занят опытами с прививками и не хочет, чтобы посетители и даже его рабочие знали все его секреты.
Последний раз я видел этого человека, когда он только что высадил 60 молодых деревьев на участке, прилегающем к дому, как показано на рисунке. Эти молодые деревья он хотел использовать просто для прививки к ним некоторых видов фруктовых деревьев. Обычно он прививал один вид на 10 стволов таким образом, чтобы он образовал 5 прямых рядов по 4 ствола в каждом. Садовник спросил меня, возможно ли это сделать с четырьмя различными видами фруктовых деревьев – персиками, грушами, абрикосами и сливами, – и я нашел, что это неплохая головоломка.
Эту головоломку удобно решать, нарисовав шахматную доску 8 х 8 на большом листе бумаги. Удалите 4 клетки, где стоит дом садовника. Вместо четырех видов деревьев воспользуйтесь 40 игральными картами, по 10 карт каждой масти. Теперь посмотрите, сможете ли вы расположить 40 карт на 60 клетках шахматной доски так, чтобы каждая масть образовала 5 прямых рядов по 4 карты в каждом ряду. Разумеется, на каждой клетке может располагаться не более одной карты.
187
Этот сноровистый молодой плотник получил в подарок ящик с инструментом и немедленно приступил к работе, дабы сделать шахматную доску в подарок чемпиону мира по шахматам доктору Ласкеру. Конечно, доктор Ласкер – крупный математик и мастер головоломок, равно как и превосходный шахматист, но сумеет ли он победить наших любителей головоломок, пытаясь определить наибольшее число различных частей, из которых плотник сделал свою доску?
Каждая часть должна состоять из одной или нескольких клеток и по форме или чередованию их цветов отличаться одна от другой. Так, одна часть может состоять из единственной черной или из единственной белой клетки. Только одна часть может состоять из двух клеток, поскольку все двуклеточные части одинаковы. Но уже трех-клеточных частей может быть 4: прямая полоска с белой клеткой в центре, прямая полоска с черной клеткой в центре, Г-образная часть с одной черной клеткой и Г-образная часть с одной белой клеткой. Когда вы разделите доску на максимальное число различных частей, вы решите головоломку.
188
Изображенный на рисунке медник только что закончил плоскодонный котел ровно на 25 галлонов, глубина которого 12 дюймов. [19]Многие ли из наших читателей смогут назвать нам (с точностью до дюйма) диаметр крышки котла, считая, что его обод вдвое превышает диаметр дна?
189
Одна леди, которая каждую неделю жертвовала некую сумму нуждающимся, намекнула получавшим это «пособие», что каждый из них имел бы на 2 доллара больше, будь их на 5 человек меньше. Каково же было общее разочарование, когда на встрече в конце недели обнаружилось, что кроме всех прежних явилось еще четверо новых просителей. В результате каждый человек получил на доллар меньше.
Считая, что сумма, которую еженедельно раздавала леди, одинакова, скажите, чему она была равна?
190
Когда я был мальчиком, мне подарили 9 огромных томов «Истории Англии» Хьюма, пообещав надарить еще кучу всяких прекрасных вещей, если я проштудирую эти книги. Должен признаться, что все, чего я не знаю об истории Англии, по объему раза в два превышает объем средней библиотеки, но я обнаружил, что с этими увесистыми томами связаны некоторые интересные головоломки.
Например, я установил, что если расположить тома на двух полках, как показано на рисунке, то получится дробь 6729/13458, в точности равная 1/2. Возможно ли с помощью всех девяти томов устроить и другие расположения, которые были бы эквивалентны дробям 1/3, 1/4, 1/5, 1/6, 1/7, 1/8 и 1/9
191
Юный Гарри был столь недоверчив, что не спешил платить деньги за вход в цирк, не разузнав о нем все, что можно. На рисунке вы видите, как он расспрашивает служителя, сколько в цирке лошадей, наездников и разных животных.
Служитель, слегка смущенный тем, насколько жалкой выглядит горстка посетителей внутри по сравнению с яркой рекламой снаружи, притворился, что не знает точного числа захватывающих аттракционов. Он объяснил, что в дополнение к лошадям и наездникам, у которых вместе 100 ног и 36 голов, имеется зверинец с дикими африканскими животными, так что общая сумма всех голов составляет 56, а всех ног 156.
Мы просим наших читателей назвать число лошадей и наездников в цирке, а также сказать, что за аттракцион расположен в клетке слева, которую вы видите на рисунке, где, как видно, находится самая интересная часть зверинца.
192
В Стране Головоломок ни одна деловая операция не совершается просто. Вот, например, фермер Джонс избавился от своих дынь следующим любопытным образом. Сначала он продал первому покупателю половину всех дынь да еще полдыни. Затем второму покупателю он продал треть остатка плюс еще треть дыни. Следующему покупателю он продал четверть остатка и четверть дыни. Потом он продал пятую часть остатка плюс пятую часть дыни. Все эти дыни он продавал по доллару за дюжину. Наконец, весь остаток он продал по цене 1 доллар за 13 дынь. Предположим, что вначале у фермера было менее 1000 дынь Не могли бы вы сказать, сколько денег он получил за все свои дыни?
Мальчик, которого вы видите на рисунке справа, складывает пирамиду из небольших круглых дынь. Он хочет сложить две треугольные пирамиды (то есть два правильных тетраэдра, у которых боковые грани и основания представляют собой правильные треугольники) таких размеров, чтобы, объединив затем все составляющие их дыни без остатка, сложить из них одну большую треугольную пирамиду. Каких размеров будут его пирамиды?
[Лойд не дает ответа на задачу о пирамидах. Из рисунка видно, что мальчик складывает пирамиду с квадратным основанием. Если Лойд имел в виду два тетраэдра, из которых можно сложить пирамиду с квадратным основанием, то ответ найти не сложно. Из любых двух тетраэдров, стороны которых выражаются последовательными числами, можно сложить одну пирамиду с квадратным основанием. (Например, из тетраэдра, содержащего 4 дыни, и тетраэдра, составленного из 10 дынь – их стороны равны соответственно 2 и 3, – можно сложить пирамиду, содержащую 14 дынь, с квадратным основанием из 9 дынь.)
Если же задача Лойда поставлена правильно, то простейшим ответом будет: две пирамиды по 10 дынь, из которых можно сложить одну пирамиду, содержащую 20 дынь. Однако что будет простейшим решением в случае, если Лойд имел в виду две малые пирамиды разных размеров? – М. Г.]
193
19
1 галлон содержит 231 кубический дюйм.