Mybrary.info
mybrary.info » Книги » Детские » Детская образовательная литература » Черная маска из Аль-Джебры - Левшин Владимир Артурович (читать книги бесплатно полностью TXT) 📗

Черная маска из Аль-Джебры - Левшин Владимир Артурович (читать книги бесплатно полностью TXT) 📗

Тут можно читать бесплатно Черная маска из Аль-Джебры - Левшин Владимир Артурович (читать книги бесплатно полностью TXT) 📗. Жанр: Детская образовательная литература. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Мне уж давно хотелось принять участие в опытах, да как-то неловко было. Но Олег подтолкнул меня, и я очутилась на эстраде.

Черная маска из Аль-Джебры - pict58.jpg

Теперь на палке были уже другие числа:

— Прошу найти сумму этих чисел, — сказал фокусник. — Быстренько, быстренько!

— В прогрессии восемь членов, — сказала я, — значит, четыре пары. Сумма крайних членов — сорок два. Умножаю сорок два на четыре. Получается сто шестьдесят восемь. Правильно?

— Абсолютно правильно! — подтвердил фокусник. — Сто шестьдесят восемь!

— Но позвольте, — вмешался Сева, — почему вы в Аль-Джебре решаете карликанские задачи? Это же простая арифметика!

— Вот именно простая. Применяя такой способ, мы упрощаем решение. Обратите внимание: упрощение — один из главных девизов Аль-Джебры. Другой ее девиз — обобщение. Правило, которое я сейчас вам показал, справедливо для любой арифметической прогрессии. И следовательно…

— Следовательно, его можно выразить буквами, — перебил Олег.

— Великолепно! — воскликнул фокусник. — Вы попали в самую точку. Итак, размещаю на палке не числа, а буквы. Каждый член прогрессии обозначаю буквой а и снабжаю ее порядковым числом, чтобы не было никакой путаницы. Такое число называется индексом и ставится чуть ниже и справа от буквы.

Фокусник подал знак, и буквы а в сопровождении индексов быстро расселись на палке:

— Внимание! Приступаю к выводу формулы. В этом ряду под а1 и а2 можно подразумевать любые числа.

— Ну конечно, — сказал Сева, — так же как и под всеми остальными.

Черная маска из Аль-Джебры - pict59.jpg

— Думайте, думайте, молодой человек! — возразил фокусник. — Ведь все эти а — члены одной арифметической прогрессии. Поэтому произвольно могут быть взяты только первые два а. Величины остальных зависят от разности между двумя первыми. Итак, обозначаю разность буквой d. Ведь разность прогрессии постоянна. Тогда a2 = а1 + d; а3 = а2 + d; a4 = a3 + d.

И так до конца прогрессии. Понятно?

— Понятно, понятно! — закричали все.

— Продолжаю! Надеюсь, все заметили, что в этой прогрессии восемь членов. Или четыре пары. Сумму крайних членов записываю так: а1 + а8.

Обозначаю сумму всех членов большой латинской буквой Эс — S. Ведь слово «сумма» начинается с этой буквы! Значит, S = 4(а1 + a8).

Кто-то спросил:

— А если в прогрессии десять членов? Как тогда вычислить сумму?

— Точно так же, — ответил фокусник. — Только пар станет уже не четыре, а пять, и последний член прогрессии будет a10: S = 5 (a1 + a10).

— Стало быть, это справедливо для любого числа членов? — не унимался дотошный зритель.

— Какое число членов вам угодно сложить?

— Пять! Двадцать! Сто семьдесят пять! Двести сорок! Миллион семьсот тысяч! — неслось со всех сторон.

Фокусник закрыл уши руками:

— Тише, тише! Сейчас все ваши просьбы будут исполнены.

Он подождал, когда все успокоятся, и снова заговорил:

— Обозначаю число членов буквой Эн — n. Тогда последний член прогрессии будет а энное — an, а сумма крайних членов a1 + an.

Нетрудно догадаться, что число пар будет в два раза меньше числа n, то есть n/2. Вот и выходит, что сумма членов запишется так: S = (a1 + an) * n/2.

— Разрешите спросить, — сказал Олег, — если число членов прогрессии нечетное, как вы его разобьете на пары?

— А уж над этим вы подумайте сами. Но поверьте честному слову фокусника — формула нисколько не изменится.

Он еще раз сложил свою палку, и она тут же исчезла. Все захлопали, засмеялись. Фокусник тоже сложился пополам и исчез так же неожиданно, как его палка.

Вот какие фокусы показывают в Аль-Джебре.

Таня.

Последняя калитка

(Нулик — отряду РВТ)

Здравствуйте, ребята! Письмо Тани нам ужасно понравилось. И все мои ученики сразу захотели стать фокусниками. Но я сказал, что фокусником буду я, а они — моими ассистентами. Их дело — сидеть на палке.

Сначала на палке никто сидеть не хотел. А когда я их уговорил, оказалось, что сидеть не на чем. Потому что мы нигде не могли найти палку, которая складывается. Я очень расстроился, а все, наоборот, обрадовались и побежали кататься на калитке. Это у нас игра такая. В Арабелле давно уже нет никаких заборов. Случайно остался один по дороге в Римскую провинцию. Там еще такая скрипучая калитка. Сядешь на нее и ездишь. Вперед-назад, вперед-назад!

Черная маска из Аль-Джебры - pict60.jpg

Ну, я тоже поплелся. Все стали кататься, а я стоял в сторонке и смотрел. А потом догадался: вот она, палка, которая складывается! То есть не палка, а забор с калиткой. Ведь калитка, если ее открыть, доходит до самого забора! А забор сделан из редких поперечных планок. В калитке четыре поперечные планки. Отсчитать еще четыре на заборе. Выбрать восемь ассистентов — на каждой планке по одному — и открыть калитку до самого конца. Мое предложение понравилось. На палке не хотел сидеть никто, зато на заборе захотели сидеть все. Чтобы не было скандала, я отобрал восемь ассистентов по порядку: Единицу, Двойку, Тройку, Четверку, Пятерку, Шестерку, Семерку и Восьмерку.

Сказать по правде, я думал, что это никакая не прогрессия, а натуральный ряд чисел, но у меня другого выхода не было, иначе все бы передрались.

Числа стали на планки. Несколько других ассистентов ухватились за калитку. Я взмахнул рукой, калитка со страшным скрипом поехала к забору… И вот уже у нас получились четыре пары чисел:

4 и 5; 3 и 6; 2 и 7; 1 и 8.

Черная маска из Аль-Джебры - pict61.jpg

Сложили каждую пару — получилось девять. Вот так штука! Выходит, я сделал открытие: натуральный ряд чисел тоже прогрессия. И разность ее равна единице.

Я сложил все числа натурального ряда от единицы до двухсот. Прямо в уме! Вот где мне пригодилась формула фокусника.

Первый член прогрессии a1 = l, а последний an = 200. Значит, сумма прогрессии равна:

S = (1 + 200) * 200/2 = 201 * 100 = 20100.

Двадцать тысяч сто! Вот здорово! От радости я изо всех сил ухватился за калитку и стал ее раскачивать вместе с ассистентами. И тут ржавые петли не выдержали, калитка отвалилась, и все попадали на землю. Настроение сразу испортилось. Еще бы! У кого синяк под глазом, у кого штаны порваны… И мы пошли домой.

По дороге я придумал еще одну прогрессию: 1 + 1 + 1 + 1 + 1 + 1 + 1 + …

И так до тысячи. В этой прогрессии разность равна нулю. Ведь нуль все-таки число! Подставил числа в формулу, и получилось: S = (1 + 1) * 1000/2 = 2 * 500 = 1000.

А дома мне здорово влетело от мамы — ей уже успели на меня нажаловаться.

— Это еще что за фокусы? — сказала она. — Никаких калиток! Чтобы больше этого не было!

Больше и не будет. Потому что кататься все равно не на чем. Калитка-то отвалилась, а она ведь была последняя!

Привет.

Нулик-Фокусник.

Простота и невероятность

(Олег — Нулику)

Вот мы и расстались с «Абракадаброй». Директор подробно объяснил, как нам завтра пройти на строительство. Мы поблагодарили его за угощение и пошли побродить.

Был уже вечер. Ярко светились огни домов, вспыхивали и гасли разноцветные вывески. Из раскрытых окон доносилась музыка. Там за накрытыми столами собрались жители Аль-Джебры, чтобы отметить свой праздник.

Черная маска из Аль-Джебры - pict62.jpg

Нам вдруг стало не по себе. Почему-то захотелось домой. Но тут совсем близко раздался голос из репродуктора: «Внимание! Внимание! Через пять минут в Павильоне невероятных задач начнется праздничное состязание. Председателем жюри единогласно избран всемирно известный барон Мюнхгаузен. Желающих принять участие просят поторопиться!»

Ты, уж наверное, догадался: мы снова очутились рядом с Парком Науки и Отдыха. Можно подумать, ноги несли нас туда сами!

Перейти на страницу:

Левшин Владимир Артурович читать все книги автора по порядку

Левшин Владимир Артурович - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Черная маска из Аль-Джебры отзывы

Отзывы читателей о книге Черная маска из Аль-Джебры, автор: Левшин Владимир Артурович. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*