Mybrary.info
mybrary.info » Книги » Детские » Детская образовательная литература » Удивительная логика - Гусев Дмитрий Алексеевич (книги бесплатно без регистрации txt) 📗

Удивительная логика - Гусев Дмитрий Алексеевич (книги бесплатно без регистрации txt) 📗

Тут можно читать бесплатно Удивительная логика - Гусев Дмитрий Алексеевич (книги бесплатно без регистрации txt) 📗. Жанр: Детская образовательная литература. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте mybrary.info (MYBRARY) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

3. Любое суждение является истинным или ложным.

Если суждение соответствует действительности, оно истинное, а если не соответствует – ложное. Например, суждение Все розы – это цветы является истинным, а суждение Все мухи – это птицы – ложным. Надо отметить, что понятия, в отличие от суждений, не могут быть истинными или ложными. Невозможно, например, утверждать, что понятие школа – истинное, а понятие институт – ложное, понятие звезда – истинное, а понятие планета – ложное и т. п. Но разве понятия Змей Горыныч, Кощей Бессмертный, вечный двигатель не ложные? Нет, эти понятия являются нулевыми (пустыми), но не истинными и не ложными. Вспомним, понятие – это форма мышления, которая обозначает какой-либо объект, и именно поэтому не может быть истинным или ложным. Истинность или ложность – это всегда характеристика какого-то высказывания, утверждения или отрицания, поэтому она применима только к суждениям, а не к понятиям.

4. Суждения бывают простыми и сложными. Сложные суждения состоят из простых, соединенных каким-либо союзом.

Как видим, суждение – это более сложная форма мышления по сравнению с понятием. Неудивительно поэтому, что суждение имеет определенную структуру, в которой можно выделить четыре части: субъект, предикат, связка и квантор.

Субъект (обозначается латинской буквой S) – это то, о чем идет речь в суждении. Например, в суждении Все учебники являются книгами речь идет об учебниках, поэтому субъектом данного суждения выступает понятие учебники.

Предикат (обозначается латинской буквой Р) – это то, что говорится о субъекте. Например, в том же суждении Все учебники являются книгами о субъекте (об учебниках) говорится, что они – книги, поэтому предикатом данного суждения выступает понятие книги.

Связка – это то, что соединяет субъект и предикат. В роли связки могут быть слова есть, является, это и т. п.

Квантор – это указатель на объем субъекта. В роли квантора могут быть слова все, некоторые, ни один и т. п.

Рассмотрим суждение Некоторые люди являются спортсменами. В нем субъектом выступает понятие люди, предикатом – понятие спортсмены, роль связки играет слово являются, а слово некоторые представляет собой квантор. Если в каком-то суждении отсутствует связка или квантор, то они все равно подразумеваются. Например, в суждении Тигры – это хищники квантор отсутствует, но он подразумевается – это слово все. С помощью условных обозначений субъекта и предиката можно отбросить содержание суждения и оставить только его логическую форму. Например, если у суждения Все прямоугольники – это геометрические фигуры отбросить содержание и оставить форму то получится: Все S есть Р. Логическая форма суждения Некоторые животные не являются млекопитающими есть Некоторые S не есть Р.

Субъект и предикат любого суждения всегда представляют собой какие-либо понятия, которые, как мы уже знаем, могут находиться в различных отношениях между собой. Между субъектом и предикатом суждения могут быть следующие логические отношения: равнозначности, пересечения, подчинения и несовместимости.

Отношение равнозначности предполагает, что субъект и предикат представляют собой равнозначные понятия. В суждении Все квадраты – это равносторонние прямоугольники субъект квадраты и предикат равносторонние прямоугольники находятся в отношении равнозначности, потому что квадрат – это обязательно равносторонний прямоугольник, а равносторонний прямоугольник – это обязательно квадрат (рис. 17).

Отношения равнозначности субъекта и предиката иллюстрируют примеры ниже:

Антарктида представляет собой ледовый материк (равнозначность).

Д. И. Менделеев – создатель Периодической системы химических элементов (равнозначность).

Отношение пересечения показывает, что субъект и предикат суждения являются пересекающимися понятиями. В суждении Некоторые писатели – это американцы субъект писатели и предикат американцы находятся в отношении пересечения (так как писатель может быть американцем и может им не быть, и американец может быть писателем, но также может им не быть) (рис. 18).

Отношением пересечения связаны субъект и предикат следующих суждений:

Некоторые русские писатели – это всемирно известные люди.

Некоторые грибы – несъедобные объекты.

Некоторые ученые – древние греки.

Удивительная логика - i_013.png

При отношении подчинения субъект и предикат суждения соотносятся как видовое и родовое понятия. В суждении Все тигры – это хищники субъект тигры и предикат хищники находятся в отношении подчинения, потому что тигр – это обязательно хищник, но хищник не обязательно тигр. Так же в суждении Некоторые хищники являются тиграми субъект хищники и предикат тигры находятся в отношении подчинения, будучи родовым и видовым понятиями.

Отношение подчинения хорошо иллюстрируют следующие суждения:

• Все бактерии являются живыми организмами.

• Солнце – это одна из звезд.

• Не все спортсмены являются олимпийскими чемпионами.

Отметим, в случае подчинения между субъектом и предикатом суждения возможны два варианта отношений: объем субъекта полностью включается в объем предиката (рис. 19), или наоборот (рис. 20).

Удивительная логика - i_014.png
Удивительная логика - i_015.png

Отношение несовместимости означает, что субъект и предикат суждения являются несовместимыми (соподчиненными) понятиями. В суждении Все планеты не являются звездами субъект планеты и предикат звезды находятся в отношении несовместимости, так как ни одна планета не может быть звездой, и ни одна звезда не может быть планетой (рис. 21).

Удивительная логика - i_016.png

В приведенных ниже суждениях субъект и предикат находятся в отношении несовместимости:

Параллельные прямые не пересекаются (несовместимость).

Учебники не могут быть развлекательными книгами (несовместимость).

Чтобы установить, в каком отношении находятся субъект и предикат того или иного суждения, надо сначала установить, какое понятие данного суждения является субъектом, а какое предикатом. Для примера определим отношение между субъектом и предикатом в суждении Некоторые военнослужащие являются россиянами.

Сначала находим субъект суждения, – это понятие военнослужащие, затем устанавливаем его предикат, – это понятие россияне. Понятия военнослужащие и россияне находятся в отношении пересечения (военнослужащий может быть россиянином и может им не быть; и россиянин может как быть, так и не быть военнослужащим). Следовательно, в указанном суждении субъект и предикат пересекаются.

Точно так же в суждении Все планеты – это небесные тела субъект и предикат находятся в отношении подчинения, а в суждении Ни один кит не является рыбой субъект и предикат несовместимы.

Как правило, все суждения подразделяют на три вида:

Атрибутивные суждения (от лат. attributum – «неотъемлемый признак») – это суждения, в которых предикат представляет собой какой-либо существенный, неотъемлемый признак субъекта. Например, суждение Все воробьи – это птицы – атрибутивное, потому что его предикат является неотъемлемым признаком субъекта, ведь быть птицей – это главный признак воробья, его атрибут, без которого он не будет самим собой (если некий объект не птица, то он обязательно и не воробей).

Перейти на страницу:

Гусев Дмитрий Алексеевич читать все книги автора по порядку

Гусев Дмитрий Алексеевич - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybrary.info.


Удивительная логика отзывы

Отзывы читателей о книге Удивительная логика, автор: Гусев Дмитрий Алексеевич. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор mybrary.info.


Прокомментировать
Подтвердите что вы не робот:*