Черный лебедь. Под знаком непредсказуемости - Талеб Нассим Николас (книги бесплатно без TXT) 📗
на 30 см выше среднего (т. е. выше 1 м 97 см, или б футов б дюймов): 1 из 740
на 40 см выше среднего (т. е. выше 2 м 07 см, или б футов 9 дюймов): 1 из 32 000
на 50 см выше среднего (т. е. выше 2 м 17 см, или 7 футов 1 дюйма): 1 из 3 500 000
на 60 см выше среднего (т. е. выше 2 м 27 см, или 7 футов 5 дюймов): 1 из 1 000 000 000
на 70 см выше среднего (т. е. выше 2 м 37 см, или 7 футов 9 дюймов): 1 из 780 000 000 000
на 80 см выше среднего (т.е. выше 2 м 47 см, или 8 футов 1 дюйма): 1 из 1 600 000 000 000 000
на 90 см выше среднего (т. е. выше 2 м 57 см, или 8 футов 5 дюймов): 1 из 8 900 000 000 000 000 000
на 100 см выше среднего (т. е. выше 2 м 67 см, или 8 футов 9 дюймов): 1 из 130 000 000 000 000 000 000 000
…и
на 110 см выше среднего (т.е. выше 2 м 77 см, или 9 футов 1 дюйма): 1 из 36 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000.
Думаю, не ошибусь, если скажу, что после 22 отклонений, означающих превышение среднего роста на 2 м 20 см, шансы достигают числа, имеющего в знаменателе так называемый «гугол» — единицу со ста нулями.
Цель этого списка — проиллюстрировать ускорение. Обратите внимание на разницу в шансах между* превышением среднего роста на 60 и на 70 сантиметров: всего 4 лишних дюйма снижают шансы с одного на миллиард до одного на 780 миллиардов! А теперь посмотрите на скачок между 70 и 80 сантиметрами: еще 4 дюйма, и шансы слетают с одного на 780 миллиардов до одного на 1,6 миллиона миллиардов! [69]
Это стремительное убывание вероятности какого-либо явления и приводит к игнорированию аномалий. Только одна кривая может давать такое убывание — гауссиана (и ее не-масштабируемые родичи).
Принцип Мандельброта
Для сравнения возьмем другой пример: взглянем на шансы быть состоятельным в Европе. Будем исходить из того, что состоятельность там — величина масштабируемая, то есть мандельбротовская. (Это конечно же приблизительное описание; оно упрощено, чтобы подчеркнуть логику масштабируемого распределения.) [70]
Масштабируемое распределение капитала
Люди с чистым капиталом выше 1 миллиона евро: 1 из 62,5
выше 2 миллионов евро: 1 из 250
выше 4 миллионов евро: 1 из 1000
выше 8 миллионов евро: 1 из 4000
выше 16 миллионов евро: 1 из 16 000
выше 32 миллионов евро: 1 из 64 000
выше 320 миллионов евро: 1 из 6 400 000
Скорость убывания здесь остается постоянной (падения нет!). Удваивая сумму денег, урезаем долю в четыре раза, не важно, на каком уровне, — 8 миллионов евро или 16 миллионов евро. Вот вам, по существу, и разница между Среднестаном и Крайнестаном.
Напомню сравнение между масштабируемым и немасштабируемым, проведенное нами в главе 3. Масштабируемость означает, что нет встречного ветра, который мешает двигаться вперед.
Конечно, мандельбротовский Крайнестан может принимать разные формы. Рассмотрим капитал в предельно концентрированной версии Крайнестана; там, удваивая капитал, уполовиниваешь долю. Результат количественно отличается от примера, приведенного выше, но он подчиняется той же логике.
Фрактальное распределение капитала с большой дифференциацией
Люди с чистым капиталом выше 1 миллиона евро: 1 из 63
выше 2 миллионов евро: 1 из 125
выше 4 миллионов евро: 1 из 250
выше 8 миллионов евро: 1 из 500
выше 16 миллионов евро: 1 из 1000
выше 32 миллионов евро: 1 из 2000
выше 320 миллионов евро: 1 из 20 000
выше 640 миллионов евро: 1 из 40 000
Если бы мы подсчитывали капиталы по методу Гаусса, то наблюдали бы следующую картину.
Распределение капитала, исходя из закона Гаусса
Люди с чистым капиталом выше 1 миллиона евро: 1 из 63
выше 2 миллионов евро: 1 из 127 000
выше 3 миллионов евро: 1 из 14 000 000 000
выше 4 миллионов евро: 1 из 886 000 000 000 000 000
выше 8 миллионов евро: 1 из 16 000 000 000 000 000 000 000 000 000 000 000 выше 16 миллионов евро: 1 из… ни один из моих компьютеров не справляется с вычислением.
Этими списками я хочу показать качественное различие парадигм.
Итак, вторая парадигма масштабируема; в ней нет встречного ветра, который сбивает с ног. Заметим, что существует другой термин для определения масштабируемости — степенные законы.
Само по себе осознание, что мы живем в среде, где властвуют такие законы, дает нам немного. Почему? Потому что в реальной жизни придется производить вычисления куда более сложные, чем те, что предлагаются Гауссом. Только «гауссова кривая» довольно легко открывает свои свойства. Мой метод — это скорее определенный взгляд на мир в целом, а не какое-то точное решение.
Что надо запомнить
Запомните: любая разновидность «гауссовой кривой» сопротивляется силе встречного ветра, под порывами которого шансы падают все быстрее и быстрее по мере удаления от нормы, в то время как масштабируемые, или мандельбротовские, варианты никаким ветрам не подвластны. Это в общем-то главное из того, что вам необходимо знать [71].
Неравенство
Давайте приглядимся получше к природе неравенства. В гауссовой структуре по мере увеличения отклонений неравенство все больше сходит на нет — из-за роста скорости падения. С масштабируемым все иначе: неравенство постоянно остается тем же. Неравенство среди сверхбогатых такое же, как и среди просто богатых, — оно не стирается [72].
Рассмотрим конкретный пример. Возьмем наугад, скажем, двух американцев, которые вместе зарабатывают 1 миллион долларов в год. Каково самое вероятное распределение этих денег? В Среднестане — по полмиллиона каждому. В Крайнестане расклад был бы таков: $50 000 и $950 000.
В ситуации с продажами книг расклад получился бы еще более асимметричным. Если бы два автора продали миллион книг, то выяснилось бы, что раскуплено 993 000 экземпляров книги одного, а другого — 7000. Эта комбинация куда вероятнее, чем то, что каждой книги продалось по 560 000 экземпляров. Чем крупнее сумма, тем асимметричней будут части, на которые она разобьется.
Почему именно так? Для сравнения возьмем, например, человеческий рост. Если бы я сказал вам, что суммарный рост двух человек 14 футов, вы, скорее всего, разбили бы это число пополам: по 7 футов у каждого, но не стали бы предполагать, что у одного рост 2 фута, у другого 12 футов. Даже вариант 8 футов и 6 футов маловероятен! Люди выше 8 футов настолько редки, что такая комбинация была бы невозможна.
Крайнестан и правило 80/20
Вы когда-нибудь слышали о правиле 80/20? Это своего рода «брэнд» степенного закона — собственно, с этого и началось, когда Вильфредо Парето заметил, что 80 процентов земли в Италии принадлежит 20 процентам населения. Некоторые трактуют это правило таким образом: 80 процентов работы делается 20 процентами населения. Или еще вариант: